

Version 3.4

Administration, Configuration and Troubleshooting

Guide

Edition: 1.0

Notices 2

 Notices

Legal notice

© Copyright 2017, Hewlett Packard Enterprise Development LP

Confidential computer software. Valid license from HPE required for possession, use or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HPE products and services
are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HPE shall not be liable for technical or editorial errors or omissions
contained herein.

Printed in the US

Warranty

The information contained herein is subject to change without notice. The only warranties for HPE products and services
are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HPE shall not be liable for technical or editorial errors or omissions
contained herein.

Trademarks

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and 64-bit configurations) on all HPE
9000 computers are Open Group UNIX 95 branded products.

Microsoft®, Internet Explorer, Windows®, Windows Server®, and Windows NT® are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

Firefox® is a registered trademark of the Mozilla Foundation.

Google Chrome® is a trademark of Google Inc.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City, California.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open Company Ltd. in the UK and other
countries.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

Neo4j is a trademark of Neo Technology.

Notices 3

Contents

Notices .. 2

Preface .. 10

About this guide .. 10

Audience ... 10

Software Versions ... 10

Typographical Conventions .. 10

Associated Documents ... 11

Support .. 11

Chapter 1 Introduction .. 12

Chapter 2 UCA for EBC Administration ...13

2.1 Starting and stopping UCA for EBC ... 13

2.1.1 Starting UCA for EBC.. 13

2.1.2 Stopping UCA for EBC .. 13

2.1.3 Displaying the status of UCA for EBC ... 14

2.2 Command-line tools .. 14

2.2.1 uca-ebc-inventory... 15

2.2.2 uca-ebc-injector .. 16

2.2.3 uca-ebc-admin ... 19

2.2.4 uca-ebc-instance ... 26

2.2.5 uca-ebc-backup .. 27

2.2.5.1 Backing up .. 27

2.2.5.2 Restoring .. 28

2.2.5.3 Listing the available backups.. 29

2.3 UCA for EBC User Interface .. 30

Chapter 3 UCA for EBC Configuration ...31

3.1 Multiple instances configuration ... 31

3.2 Configuration files .. 32

3.2.1 uca-ebc.properties file configuration ... 32

3.2.2 ActionRegistry.xml file configuration .. 35

3.2.2.1 Defining OSS Open Mediation action references ... 36

3.2.2.2 Defining UMB action references ... 40

3.2.3 uca-ebc-log4j.xml file configuration ... 41

3.2.4 Additional configuration files .. 42

3.2.4.1 UCA EBC Spring Framework configuration files ... 43

3.2.5 How to revert back to the default configuration files .. 43

3.3 UCA-EBC UMB Mediation Adapter Configuration .. 43

3.3.1 The properties file ... 43

3.3.2 The hazelcast.xml file .. 44

3.3.3 The logging configuration file... 44

3.3.4 The AdapterConfiguration.xml file ... 44

3.3.4.1 Defining static flows: .. 44

3.3.4.2 Defining dynamic flows: ... 45

Notices 4

3.4 High-Availability (HA) configuration ... 45

3.4.1 Simple cluster configuration using NFS ... 45

3.4.2 Neo4j database High-Availability (HA) configuration for Topology Extension ... 46

3.5 Backup and restore ... 47

3.5.1 Standalone UCA for EBC .. 47

3.5.2 Clustered UCA for EBC .. 48

3.5.3 UCA for EBC with external topology server .. 48

3.5.3.1 First step: backup/restore of UCA for EBC ... 48

3.5.3.2 Second step: backup/restore of neo4j database .. 48

Chapter 4 UCA for EBC Monitoring ...50

4.1 Monitoring the alarm flow in real-time .. 50

4.1.1 Collector layer ... 51

4.1.2 Dispatch layer .. 52

4.1.3 Value Pack layer .. 52

4.1.4 Scenario/Engine layer.. 52

Chapter 5 UCA for EBC Troubleshooting ... 54

5.1 Troubleshooting tools ... 54

5.1.1 Log files ... 54

5.1.2 UCA for EBC Graphical User Interface .. 54

5.1.3 JMX Console .. 56

5.1.3.1 Monitoring UCA for EBC internal components ... 59

5.1.3.2 Monitoring UCA for EBC value packs .. 70

5.1.3.3 Monitoring UCA for EBC scenarios ... 81

Chapter 6 UCA for EBC Advanced Troubleshooting ... 86

6.1 UCA for EBC Logging Mechanism .. 86

6.1.1 Standard application logging .. 86

6.1.2 Collector logging .. 86

6.1.2.1 Events received through the OSS Open Mediation UCA for EBC Channel Adapter 87

6.1.2.2 Events received through the UMB UCA Mediation Adapter .. 87

6.1.3 Scenario logging ... 88

6.1.3.1 Scenario logging ... 88

6.1.3.2 Scenario exceptions logging .. 89

6.1.3.3 Scenario rule execution logging ... 89

6.1.4 Drools logging ... 95

6.1.4.1 Configuring the log for Working Memory Agenda and Event Listeners .. 95

6.2 Managing the Drools engine(s) .. 96

6.2.1 Dumping the Working Memory ... 96

6.2.2 Clearing the Working Memory ... 98

6.2.3 Reloading the rules ... 99

6.3 Managing the flows and actions .. 101

6.3.1 Managing the DB flows... 101

6.3.1.1 Managing individual DB flows ... 101

6.3.2 Managing the mediation flows .. 103

6.3.2.1 Managing the mediation flows at the value pack level ... 103

6.3.2.2 Managing individual mediation flows .. 104

Notices 5

6.3.3 Managing actions ... 106

6.3.3.1 Dumping Failed Actions .. 106

6.4 UCA for EBC Performance analysis... 107

Chapter 7 Frequent problems and solutions ... 109

7.1 Problems executing uca-ebc-admin .. 109

7.1.1 Cannot connect to UCA for EBC JMX connector ... 109

7.1.2 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc-admin.log .. 109

7.2 Problems executing uca-ebc-injector ... 110

7.2.1 Cannot create connection .. 110

7.2.2 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc-injector.log ... 110

7.3 Problems starting UCA for EBC ... 111

7.3.1 AlreadyBoundException ... 111

7.3.2 ClassNotFoundException: javax.management.remote.rmi.RMIServerImpl_Stub .. 111

7.3.3 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc.log ... 112

Appendix A Glossary .. 113

Notices 6

List of tables

Table 1: Software versions ... 10

Table 2: uca-ebc-injector tool options ... 18

Table 3: Properties for uca-ebc-injector in uca-ebc.properties file .. 19

Table 4: uca-ebc-admin tool main options .. 20

Table 5: uca-ebc-admin tool sub-options .. 23

Table 6: Properties for uca-ebc-admin in uca-ebc.properties file .. 26

Table 7: Main options for the uca-ebc-instance tool .. 26

Table 8: Options for backing up UCA for EBC instances using the uca-ebc-instance tool ... 28

Table 9: Options for restoring UCA for EBC instances using the uca-ebc-instance tool ... 29

Table 10: Options for listing the available UCA for EBC instance backups using the uca-ebc-backup tool ... 29

Table 11: Host and Port # properties in the uca-ebc.properties file .. 32

Table 12: Web GUI properties in the uca-ebc.properties file .. 33

Table 13: Collector properties in the uca-ebc.properties file .. 33

Table 14: UMB Received Events .. 34

Table 15: Action Manager properties in the uca-ebc.properties file .. 34

Table 16: Rule Engine logger properties in the uca-ebc.properties file .. 34

Table 17: Java JMX Console: UCA for EBC Action Manager Action Queue Attributes .. 60

Table 18: Java JMX Console: UCA for EBC Action Manager Action Queue Operations ... 60

Table 19: Java JMX Console: UCA for EBC Action Manager Action Statistics Attributes .. 60

Table 20: Java JMX Console: UCA for EBC Action Manager Action Statistics Operations ... 61

Table 21: Java JMX Console: UCA for EBC Action Manager Action Threads Attributes ... 61

Table 22: Java JMX Console: UCA for EBC Action Manager Action Threads Operations.. 61

Table 23: Java JMX Console: UCA for EBC Collector - Attributes .. 62

Table 24: Java JMX Console: UCA for EBC Collector Operations .. 63

Table 25: Java JMX Console: UCA for EBC Dispatcher - Attributes ... 64

Table 26: Java JMX Console: UCA for EBC Dispatcher - Operations .. 64

Notices 7

Table 27: Java JMX Console: UCA for EBC Properties - Attributes .. 65

Table 28: Java JMX Console: UCA for EBC Server - Operations ... 66

Table 29: Java JMX Console: UCA for EBC Value Pack Manager - Attributes ... 67

Table 30: Java JMX Console: UCA for EBC Value Pack Manager - Operations .. 67

Table 31: Java JMX Console: UCA for EBC Value Pack - Class Loader - Attributes ... 71

Table 32: Java JMX Console: UCA for EBC Value Pack - Class Loader - Operations ... 72

Table 33: Java JMX Console: UCA for EBC Value Pack DB Flows - Attributes ... 74

Table 34: Java JMX Console: UCA for EBC Value Pack DB Flows - Operations ... 75

Table 35: Java JMX Console: UCA for EBC Value Pack Mediation Flows - Attributes ... 76

Table 36: Java JMX Console: UCA for EBC Value Pack Mediation Flows - Operations ... 77

Table 37: Java JMX Console: UCA for EBC Value Pack Value Pack - Attributes .. 79

Table 38: Java JMX Console: UCA for EBC Value Pack Value Pack - Operations .. 81

Table 39: Java JMX Console: UCA for EBC Value Pack Scenario - Attributes ... 82

Table 40: Java JMX Console: UCA for EBC Value Pack Scenario - Operations ... 85

Table 41: uca-ebc-admin: Cannot connect to UCA for EBC JMX connector ... 109

Table 42: uca-ebc-admin: FileNotFoundException... 109

Table 43: uca-ebc-injector: Cannot create connection ... 110

Table 44: uca-ebc-injector: FileNotFoundException .. 110

Table 45: uca-ebc: AlreadyBoundException .. 111

Table 46: uca-ebc: ClassNotFoundException ... 111

Table 47: uca-ebc: FileNotFoundException ... 112

Table 48: Acronym table .. 113

Notices 8

List of figures

Figure 1: ActionRegistry.xml file .. 36

Figure 2: UCA for EBC Monitoring the Alarm Flow .. 51

Figure 3: Troubleshooting/Log panel at Application level ...55

Figure 4: Troubleshooting/Statistics panel at Application Level .. 56

Figure 5: Java JMX Console: Connecting to UCA for EBC Server .. 57

Figure 6: Java JMX Console: UCA for EBC MBeans ... 58

Figure 7: Java JMX Console: UCA for EBC Action Manager .. 59

Figure 8: Java JMX Console: UCA for EBC Collector - Attributes ... 62

Figure 9: Java JMX Console: UCA for EBC Dispatcher - Attributes .. 63

Figure 10: Java JMX Console: UCA for EBC Properties - Attributes .. 65

Figure 11: Java JMX Console: UCA for EBC Server - Operations.. 66

Figure 12: Java JMX Console: UCA for EBC Value Pack Manager - Operations ... 67

Figure 13: Java JMX Console: a UCA for EBC Value Pack ... 71

Figure 14: Java JMX Console: UCA for EBC Value Pack - Class Loader - Attributes .. 71

Figure 15: Java JMX Console: UCA for EBC Value Pack - Class Loader - Operations .. 72

Figure 16: Java JMX Console: UCA for EBC Value Pack DB Flows - Attributes .. 74

Figure 17: Java JMX Console: UCA for EBC Value Pack DB Flows - Operations .. 75

Figure 18: Java JMX Console: UCA for EBC Value Pack Mediation Flows - Attributes ... 76

Figure 19: Java JMX Console: UCA for EBC Value Pack Mediation Flows - Operations .. 77

Figure 20: Java JMX Console: UCA for EBC Value Pack Scenarios .. 78

Figure 21: Java JMX Console: UCA for EBC Value Pack Value Pack - Attributes ... 79

Figure 22: Java JMX Console: UCA for EBC Value Pack Value Pack - Operations ... 81

Figure 23: Java JMX Console: UCA for EBC Value Pack Scenario - Attributes ... 82

Figure 24: Java JMX Console: UCA for EBC Value Pack Scenario - Operations .. 85

Figure 25: Configuring scenario specific logging in the uca-ebc-log4j.xml file .. 88

Figure 26: Configuring scenario exceptions specific logging in the uca-ebc-log4j.xml file ... 89

Notices 9

Figure 27: Java JMX Console: Enabling/Disabling scenario specific rule execution logging for one scenario 90

Figure 28: Selecting the JBoss Drools perspective in Eclipse IDE by clicking on the JBoss Drools perspective icon 91

Figure 29: Selecting the JBoss Drools perspective in Eclipse IDE by using the Eclipse IDE menus ... 92

Figure 30: Showing the JBoss Drools Audit view in Eclipse IDE ... 92

Figure 31: Eclipse IDE: Using drag and drop to open a Drools engine log file in the Drools Audit panel ... 93

Audit panel 93

Figure 33: Eclipse IDE: Viewing scenario rule execution logs ... 93

Figure 34: Showing the JBoss Drools Agenda or Working Memory view in Eclipse IDE ... 94

Figure 35: Running a JUnit Test of a Value Pack in debug mode in Eclipse IDE .. 94

Figure 36: Sample view of the Drools Working Memory panel in Eclipse IDE .. 95

Figure 37: Sample view of the Drools Agenda panel in Eclipse IDE ... 95

Figure 38: Configuring the log for Working Memory Agenda and Event Listeners .. 96

Figure 39: Java JMX Console: Dumping the working memory of a Scenario .. 97

Figure 40: UCA for EBC User Interface: Dumping the working memory of a scenario .. 97

Figure 41: Java JMX Console: Clearing the working memory of a Scenario .. 98

Figure 42: UCA for EBC User Interface: Clearing the working memory of a scenario ... 99

Figure 43: Java JMX Console: Reloading the rules of a Scenario ... 100

Figure 44: Java JMX Console: Reloading the rules of all Scenarios of a Value Pack ... 100

Figure 45: UCA for EBC User Interface: Reloading the rules of a Scenario ... 101

Figure 46: Java JMX Console: Performing operations on a single DB flow ...102

Figure 47: UCA for EBC User Interface: Performing operations on a single DB flow ...102

Figure 48: Java JMX Console: Performing operations on mediation flows at the Value Pack level .. 103

Figure 49: UCA for EBC User Interface: Resynchronizing the mediation flows of a Value Pack ... 104

Figure 50: Java JMX Console: Performing operations on a single mediation flow ...105

Figure 51: UCA for EBC User Interface: Performing operations on a single mediation flow ... 106

Figure 52: Java JMX Console: Dumping Failed Actions for a Scenario ..107

Figure 53: Java JMX Console: Monitoring performance of UCA for EBC Server ... 108

Preface 10

Preface

About this guide

This guide provides an overview of Unified Correlated Analyzer for Event Based Correlation product and describes how to
administer, configure, monitor and troubleshoot the UCA for EBC product.

Product Name: Unified Correlation Analyzer for Event Based Correlation (also referred to in this document as UCA for
EBC)

Product Version: 3.4

Kit Version: 3.4

Audience

Here are some recommendations based on possible reader profiles:

 Solution Developers and integrators
 Software Development Engineers

Software Versions

The term UNIX is used as a generic reference to the operating system, unless otherwise specified.

The software versions referred to in this document are as follows:

Table 1: Software versions

Product Version Supported Operating systems

UCA for Event Based Correlation

Server Version 3.4
 HP-UX 11.31 for Itanium

 Red Hat Enterprise Linux Server release 6.5 & 7.2

UCA for Event Based Channel
Adapter 3.4

 HP-UX 11.31 for Itanium
 Red Hat Enterprise Linux Server release 6.5 & 7.2

UCA for Event Based Correlation
Software Development Kit Version 3.4

 Windows XP / Vista 64 bits

 Windows Server 2012
 Windows 7 64 bits

Typographical Conventions

Courier Font:

 Source code and examples of file contents.

 Commands that you enter on the screen.

 Pathnames

Preface 11

 Keyboard key names

Italic Text:

 Filenames, programs and parameters.

 The names of other documents referenced in this manual.

Bold Text:

 To introduce new terms and to emphasize important words.

Associated Documents

The following documents contain useful reference information:

[R1] HPE UCA for EBC Reference Guide

[R2] HPE UCA for EBC Value Pack Development Guide

[R3] HPE UCA for EBC User Interface Guide

[R4] HPE UCA for EBC Installation Guide

[R5] HPE UCA for EBC Topology Extension Guide

[R6] HPE UCA for EBC Clustering and HA Guide

Support

Please visit our HPE Software Support Online Web site at https://softwaresupport.hpe.com/ for contact information, and
details about HP Enterprise Software products, services, and support.

The Software support area of the Software Web site includes the following:

 Downloadable documentation.

 Troubleshooting information.

 Patches and updates.

 Problem reporting.

 Training information.

 Support program information.

https://softwaresupport.hpe.com/

Introduction 12

Chapter 1

Introduction

This guide describes how to administer, configure, monitor and troubleshoot the UCA for EBC product.

Throughout this document, we use the ${UCA_EBC_HOME} environment variable to reference the root directory

UCA for EBC. The default value for the ${UCA_EBC_HOME} environment variable is /opt/UCA-

EBC. The ${UCA_EBC_HOME} environment variable thus references the /opt/UCA-EBC directory unless UCA for

EBC

We also use ${UCA_EBC_DATA} UCA for

EBC. The default value for the ${UCA_EBC_DATA} environment variable is /var/opt/UCA-EBC. The

${UCA_EBC_DATA} environment variable thus references the /var/opt/UCA-EBC directory unless UCA for

EBC

The ${UCA_EBC_DATA} directory may contain multiple instances of UCA-EBC. In this document, we will use the

value ${UCA_EBC_INSTANCE} for referring to ${UCA_EBC_DATA}/instances/<instance-name>

directory.

At installation, a single <instance-name> is configured: default.

NOTE:

For more information on how to install the UCA for EBC product, please refer to [R4] HPE UCA for EBC

Installation Guide.

NOTE:

For more information on how to install the UCA for EBC product, please refer to [R1] HPE UCA for EBC

Reference Guide.

UCA for EBC Administration 13

Chapter 2

UCA for EBC Administration

2.1 Starting and stopping UCA for EBC

2.1.1 Starting UCA for EBC

To start UCA for EBC, please run the following commands as uca user:

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc start

Using UCA for EBC Home directory specified by the UCA_EBC_HOME environment

variable: /opt/UCA-EBC

Using UCA for EBC Data directory specified by the UCA_EBC_DATA environment

variable: /var/opt/UCA-EBC

*** INFO: Starting UCA for Event Based Correlation version 3.4

Traces are logged in the ${UCA_EBC_INSTANCE}/logs/uca-ebc.log file.

To start UCA for EBC in verbose mode (traces logged to the console), please run the following commands as uca user
(note the use of the v option):

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc –v start

Since UCA-EBC V2.0, it is possible to launch multiple instances on a same machine. Each instance is managed by the

uca-ebc-instance command line tool (refer to chapter 2.2.4). If not specified, the default instance is launched.

To start UCA for EBC for a specific instance (specified by <instance-name> in the example below), please run the

following commands as uca user (note the use of the i option):

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc –i <instance-name> start

2.1.2 Stopping UCA for EBC

In order to stop UCA for EBC, please run the following commands as uca user:

On both HP-UX and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc stop

UCA for EBC Administration 14

Using UCA for EBC Home directory specified by the UCA_EBC_HOME environment

variable: /opt/UCA-EBC

Using UCA for EBC Data directory specified by the UCA_EBC_DATA environment

variable: /var/opt/UCA-EBC

*** INFO: Shutting down UCA for Event Based Correlation version 3.4

*** INFO: UCA for Event Based Correlation version 3.4 has been successfully

stopped

Since UCA-EBC V2.0, it is possible to have multiple instances running on a same machine. If not specified, the default
instance is stopped.

To stop UCA for EBC for a specific instance (specified by <instance-name> in the example below), please run the
following commands as uca user (note the use of the i option):

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc –i <instance-name> stop

2.1.3 Displaying the status of UCA for EBC

In order to show the status of UCA for EBC, please run the following commands as uca user:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc status

Using UCA for EBC Home directory specified by the UCA_EBC_HOME environment

variable: /opt/UCA-EBC

Using UCA for EBC Data directory specified by the UCA_EBC_DATA environment

variable: /var/opt/UCA-EBC

*** INFO: UCA for Event Based Correlation version 3.4 is running

The status of UCA for EBC

Since UCA-EBC V2.0, it is possible to have multiple instances running on a same machine. If not specified, the status of
the default instance is returned.

To get the status of UCA for EBC for a specific instance (specified by <instance-name> in the example below), please run
the following commands as uca user (note the use of the i option):

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc –i <instance-name> show

2.2 Command-line tools

Some command-line tools are provided in the ${UCA_EBC_HOME}/bin folder that may prove to be of some help to users
of UCA for EBC:

UCA for EBC Administration 15

 uca-ebc-inventory: this command-line tool lists the UCA for EBC packages installed on the system

 uca-ebc-injector: this command-line tool provides the capability to inject alarms or events described in XML files

directly into the UCA for EBC input queue without going through the mediation layer (OSS Open Mediation V7.2 or

UMB V1.1), thus bypassing both OSS Open Mediation V7.2 and UCA for EBC Channel Adapter (or UMB V1.1 and UCA

for EBC Adapter if UMB is used)

 uca-ebc-admin: this command-line tool provides a lot of options to configure, administer, and monitor UCA for EBC,

but also UCA for EBC value packs and scenarios. Most of the features of this tool are also available using the UCA for

EBC User Interface

 uca-ebc-instance: this command line tool manages the different instances of UCA for EBC. It provides options to list

current instances, add a new instance, delete or rename an existing instance and set the default instance name

 uca-ebc-backup: this command line tool provides facilities for backup and restore of the instances of UCA for EBC

All command-line tools should be run under the uca user account.

For more information on the UCA for EBC User Interface, please refer to: [R3] HPE UCA for EBC User
Interface Guide

2.2.1 uca-ebc-inventory

This command-line tool lists the packages (including patches) installed on the system for the following products:

 UCA for EBC Server

 UCA for EBC Channel Adapter for OSS Open Mediation

 UCA for EBC Development Kit

 OSS Open Mediation and OSS Open Mediation Channel Adapters

 UMB and UMB Adapters

To execute the uca-ebc-inventory tool, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-inventory

-ebc-inventory:

 UCA For Event Based Correlation

 Components Inventory

 on <hostname> system

Installed UCA-EBC components:

UCA-EBCSERVER 3.4-0A HPE UCA EBC Server Version V3.4 Level 0 Rev A

UCA-EBCCA 3.4-0A HPE UCA EBC Channel Adapter Version V3.4 Level

0 Rev A

UCA-EBCTOPO 3.4-0A HPE UCA EBC Topology features Version V3.4 Level

0 Rev A

Installed Mediation components:

ngossopenmediation V720-RHEL6 HPE CMS Open Mediation Version 7.2.0

---------------- END of UCA INVENTORY ------------------

The uca-ebc-inventory tool has no execution options and no associated configuration file.

UCA for EBC Administration 16

2.2.2 uca-ebc-injector

This command-line tool provides the capability to easily send events to UCA for EBC by pushing XML files containing
these events to the JMS input queue (implemented as a JMS Topic) of UCA for EBC.

Events can be Alarm creation, Alarm Attribute Value Change, Alarm State Change, Alarm Deletion, but can also be any
object of classes extending the DefaultEvent class.

The events are directly injected into UCA for EBC without going through the mediation layer (OSS Open Mediation V7.2
or UMB V1.1), thus bypassing both OSS Open Mediation V7.2 and UCA for EBC Channel Adapter (or UMB V1.1 and UCA
for EBC Adapter if UMB is used).

This command-line tool can be very helpful for testing UCA for EBC Value Packs in real conditions without having to set

up the mediation layer.

The uca-ebc-injector tool can read files containing alarms and more generally files containing any class of event
extending DefaultEvent.

Example format of an Alarms file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Alarms xmlns="http://hp.com/uca/expert/x733Alarm">

 <AlarmCreationInterface>

 <sourceIdentifier>src</sourceIdentifier>

 <identifier>1</identifier>

 <originatingManagedEntity>B1</originatingManagedEntity>

 <alarmType>COMMUNICATIONS_ALARM</alarmType>

 <probableCause>Fire</probableCause>

 <perceivedSeverity>MINOR</perceivedSeverity>

 <alarmRaisedTime>2009-09-16T12:00:00</alarmRaisedTime>

 <targetValuePack>myVP##temipFlow</targetValuePack>

 </AlarmCreationInterface>

<AlarmCreationInterface>

[. . .]

</AlarmCreationInterface>

</Alarms>

CAUTION:
Events file cannot contain directly the raw description of events.
Events in events file have to be packaged in simple structures called EventBoxBase containing the event itself
and an attribute indicating the class of the event. The information about the class of the event will be used by UCA
to correctly un-marshal the event.

Example format of an Events file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Events xmlns="http://hp.com/uca/expert/event">

<EventBoxBase eventClassName="com.hp.umb.example.metrics.Temperature">

 <eventString><![CDATA[<temperature

xmlns:ns2="http://hp.com/uca/expert/event"

xmlns:ns3="http://hp.com/umb/example/metrics"

xmlns:ns4="http://hp.com/uca/expert/x733Alarm">

<ns2:identifier>100</ns2:identifier>

<ns2:eventTime>0</ns2:eventTime>

<ns2:targetValuePack>MyVP</ns2:targetValuePack>

UCA for EBC Administration 17

<ns3:value>37.2</ns3:value>

</temperature>]]>

 </eventString>

</EventBoxBase>

</Events>

IMPORTANT: All the classes of events sent by the uca-ebc-injector must be loaded in UCA-EBC. For that
purpose, this classes must be packaged in a .jar file placed in the

${UCA_EBC_INSTANCE}/externallib directory, and uca-ebc must be restarted.

In the example above, the class com.hp.umb.example.metrics.Temperature must be wrapped

in a jar file put in ${UCA_EBC_INSTANCE}/externallib (by default /var/opt/UCA-

EBC/instance/default/externallib)

NOTE: When events are received by UCA through the UMB mediation layer, and when events logging is activated

(ref 6.1.2.2), the events are logged in the uca-ebc-received-event.log directly in EventBoxBase structures as

above, making it easy to re-inject them with the uca-ebc-injector. For that purpose, duplicate the uca-ebc-received-
event.log file into a myEventsFile.xml and make sure that myEventsFile.xml looks like the file below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Events xmlns="http://hp.com/uca/expert/event">

<!-- put the content of uca-ebc-received-event.log here -->

</Events>

The following sections describe how to execute and how to configure the uca-ebc-injector tool.

To execute the uca-ebc-injector tool, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-injector <options>

<options> is a list of valid options for the uca-ebc-injector tool

The uca-ebc-injector command-line tool can be used either in random mode, where random alarms or events are

generated automatically based on a template and sent to UCA for EBC, or in file mode, where alarms/events are provided

to the uca-ebc-injector tool as an XML file that is then sent to UCA for EBC.

The uca-ebc-injector tool is by default in file mode unless the -r or --random option is used, in which case the uca-ebc-
injector tool is in random mode.

To use the uca-ebc-injector tool in file mode, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-injector –file /tmp/Events.xml

The above command will send 1 burst of alarms to UCA for EBC. The alarms in this burst will be exactly the same as the
alarms in the file specified by the -file or --filename option.

UCA for EBC Administration 18

To use the uca-ebc-injector tool in random mode, please use the -r or --random option. Below is an example of the uca-
ebc-injector tool being used in random mode:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-injector --random –file /tmp/Alarms.xml --number 10 --delay 5000

The above command will send 10 bursts of random alarms to UCA for EBC. The delay between each burst will be 5
seconds. Each burst of alarms will send one alarm unless the --buffer-size option is specified. The alarms sent in the burst
will be the same as the alarms in the template file except for the ID of the alarms (sequential IDs will be used instead) and
the severity of the alarm (the severity will be chosen at random).

It is possible to have multiple instances running on a same machine. If not specified, the uca-ebc-injector tool applies to

the default instance.

This tool has the following options available:

Table 2: uca-ebc-injector tool options

Option name Description

-i <instance-name> Default value: the default instance name

This option sets the instance of UCA for EBC to use. Instance
<instance-name> must exist. If used, this option must be set
as first option.

--buffer-size <Size> Default value: 1

This option is used in random mode (-r, or --random option)

to specify the number of alarms per alarm burst.

--delay <Delay> Default value: 0

This option specifies the delay (in milliseconds) between 2

alarms files (in file mode) or 2 alarm bursts (in random
mode).

-f, -file <Filename> No default value

This option sets the uca-ebc-injector tool in file or random
modes. It specifies one alarm file to use as input for the uca-
ebc-injector tool.

The file specified by <filename> must be a valid XML file
complying with the Alarm XSD file located at the following

location: ${UCA_EBC_HOME}/schemas/uca-
expert-alarm.xsd

--number <Number> Default value: 1

This option is used in random mode (-r, or --random option)
to specify the number of alarm bursts to be sent

-r, --random This option sets the uca-ebc-injector tool in random mode.

This option can be used in conjunction with the -file option
to send random alarms (sequential IDs, random severity)
based on the alarms provided with the -file option

UCA for EBC Administration 19

The uca-ebc-injector tool has some configuration properties defined in the

${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file, but these properties are FOR INTERNAL USE

ONLY, and are not meant to be updated.

The following table lists these properties for reference only:

Table 3: Properties for uca-ebc-injector in uca-ebc.properties file

Property name Explanation

java.naming.factory.initial Default value :
org.apache.activemq.jndi.ActiveMQInitialContextFactory

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE

OF THIS PROPERTY.

java.naming.provider.url Default value :
tcp\://${uca.ebc.serverhost}\:${uca.ebc.jms.broker.port}

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE
OF THIS PROPERTY.

topic.uca-ebc-alarms Default value : com.hp.uca.ebc.alarms

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE
OF THIS PROPERTY.

topic.uca-ebc-events Default value : com.hp.uca.ebc.events

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE
OF THIS PROPERTY.

2.2.3 uca-ebc-admin

This command-line tool provides a lot of options to configure, administer, and monitor UCA for EBC Server, but also UCA

for EBC value packs and scenarios. Most of the features of this tool are also available using the UCA for EBC User
Interface.

The following sections describe how to execute and how to configure the uca-ebc-admin tool.

To execute the uca-ebc-admin tool, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-admin <options>

<options> is a list of valid options for the uca-ebc-admin tool (both main options and sub-options)

It is possible to have multiple instances running on a same machine. If not specified, the uca-ebc-admin tool applies to

the default instance. Otherwise, the instance to administer can be specified with the -i <instance name> option.

This option must be the first option listed.

The following table lists the main options of the uca-ebc-admin tool (sub-options can be used alongside these main
options, the list of which is described further):

UCA for EBC Administration 20

Table 4: uca-ebc-admin tool main options

Option name Description

-h, --help This option displays the uca-ebc-admin tool usage message

-i <instance-name> This option sets the instance of UCA for EBC to administer.
Instance <instance-name> must exist. If used, this option
must be the first option.

-a, --audit This option dumps full audit information (including status,
performance information):

 information on UCA EBC instance:

 Value pack manager

 Collector

 Dispatcher

 Action Threads, Stats, Queue

 Alarm forwarders

 Information on value packs

 Mediation flows

 Db flows

 Information on scenarios

 Filters

 Queue

 Working Memory

 Scenario/Watchdog threads

This option always applies to all value packs and scenarios.

-s, --stats This option dumps specific statistics information (including
status and some performance information) on all value packs
and scenarios or a specific value pack or scenario depending
on the sub-options used.

 See Notes: (1) (2) (3)

-l, --list This option lists all Value Packs and Scenarios

-lg, --log4j This option reloads the UCA for EBC log4j configuration file

-p, --perf This option displays performance measurements.

-w, --workingMemory This option dumps the working memory of one or more

scenarios.

By default it applies to all scenarios of all value packs except

if sub-options are used.

 See Notes: (1) (2) (3)

-c, --clean This option cleans the working memory (retracts all facts) of

one or more scenarios.

By default it applies to all scenarios of all value packs except
if sub-options are used.

 See Notes: (1) (2) (3)

-r, --reload This option reloads the rule engine of one or more scenarios
or reloads a specific rules file.

UCA for EBC Administration 21

By default this option reloads the rule engine of all scenarios
of all value packs except if sub-options are used.

 See Notes: (1) (2) (3) (4)

-rc, --reloadConf This option reloads the configuration files. The files to be
reloaded can be chosen between the:
- whole set of files of all actives value packs
- whole set of files of a single active value pack

- whole set of files concerning a single scenario
- a single file within a scenario when used in conjunction with
the conf sub-option.

 See Notes: (1) (2) (3) (5)

-dep, --deploy This option deploys a value pack stored in the
${UCA_EBC_INSTANCE}/valuepacks directory into the
${UCA_EBC_INSTANCE}/deploy directory.

This option applies to the selected value pack.

 See Note: (2)

Once deployed, the value pack can be started by executing
the uca-ebc-admin tool with the -start, --start option (if UCA
for EBC is already running) or by starting UCA for EBC (if
UCA for EBC is stopped).

-undep, --undeploy This option undeploys a value pack from the

${UCA_EBC_INSTANCE}/deploy directory and creates an
archive (ZIP file) of it in the
${UCA_EBC_INSTANCE}/valuepacks directory. The zipped
value pack that was previously present in the
${UCA_EBC_INSTANCE}/valuepacks directory is moved to
the ${UCA_EBC_INSTANCE}/archive directory and a
timestamp is added to the file name.

This option applies to the selected value pack.

 See Note: (2)

Once the value pack has been undeployed, it can be
deployed back again by using the -deploy, --deploy option.

-start, --start This option starts a value pack.

This option applies to the selected value pack.

 See Note: (2)

-stop, --stop This option stops a value pack.

This option applies to the selected value pack.

 See Note: (2)

-d, --disable This option disables:

UCA for EBC Administration 22

 either rule engine logging (if -rl,--ruleLogging option is

also selected)

 or scenario logging (if -sl,--scenarioLogging option is

also selected).

-e, --enable This option enables:

 either rule engine logging (if -rl,--ruleLogging option is

also selected)

 or scenario logging (if -sl,--scenarioLogging option is

also selected).

-rl, --ruleLogging Used in conjunction with either the d, --disable or e, --
enable options, this option enables or disables rule engine

logging for one or more scenarios.

By default it applies to all scenarios of all value packs except
if sub-options are used.

 See Notes: (1) (2) (3)

-startflow, --startflow This option starts a mediation flow.

Used with the -vpn <value pack name> and vpv <value pack
version> sub-options, this option applies to all the mediation

flows of the selected value pack.

Used with the -vpn <value pack name>, vpv <value pack
version>, and flow <flow name> sub-options, this option
applies to the selected mediation flow of the selected value

pack.

-stopflow, --stopflow This option stops a mediation flow.

Used with the -vpn <value pack name> and vpv <value pack
version> sub-options, this option applies to all the mediation

flows of the selected value pack.

Used with the -vpn <value pack name>, vpv <value pack
version>, and flow <flow name> sub-options, this option
applies to the selected mediation flow of the selected value
pack.

-resyncflow, --resyncflow This option resynchronizes a mediation flow.

Used with the -vpn <value pack name> and vpv <value pack
version> sub-options, this option applies to all the mediation
flows of the selected value pack.

Used with the -vpn <value pack name>, vpv <value pack

version>, and flow <flow name> sub-options, this option
applies to the selected mediation flow of the selected value

pack.

-statusflow, --statusflow This option displays the status of a mediation flow.

UCA for EBC Administration 23

Used with the -vpn <value pack name> and vpv <value pack
version> sub-options, this option applies to all the mediation
flows of the selected value pack.

Used with the -vpn <value pack name>, vpv <value pack
version>, and flow <flow name> sub-options, this option
applies to the selected mediation flow of the selected value
pack.

-dumpfa, --dumpfailedactions Dumps failed actions of a scenario to the logs.

This option applies to the selected scenario.

 See Note: (3)

-retractfa, --retractfailedactions Retracts failed actions of a scenario from Working Memory

This option applies to the selected scenario.

 See Note: (3)

-R, --restartServer Restart the UCA-EBC Server

 See Note: (6)

-S, --showServer Shows the status of UCA-EBC Server

 See Note: (6)

-T, --stopServer Stops the UCA-EBC Server

 See Note: (6)

-ebc-

NOTE:

(1) If no sub-option is selected, then the option applies to all value packs or all their scenarios

(2) If -vpn <value pack name> and vpv <value pack version> sub-options are selected, then the option applies to the
specified value pack or all its scenarios

(3) If -vpn <value pack name>, -vpv <value pack version>, and -scenario <scenario name> sub-options are selected,
then the option applies to the specified scenario

(4) If -vpn <value pack name>, -vpv <value pack version>, -scenario <scenario name>, and -rule <rules file identifier>
sub-options are selected, then the option applies to the specified rules file.

(5) If -vpn <value pack name>, -vpv <value pack version>, -scenario <scenario name>, and -conf <configuration file
identifier> sub-options are selected, then the option applies to the specified configuration file.

(6) If -i <instance name> option is selected, then the option applies to the specified UCA-EBC Server instance.
Otherwise it applies to the default UCA-EBC Server instance.

The following table lists the sub-options that can be used in conjunction with the main options of the uca-ebc-admin tool:

Table 5: uca-ebc-admin tool sub-options

UCA for EBC Administration 24

Option name Description

-vpn <value pack name> Used in conjunction with the -vpv sub-option, this sub-

option selects the value pack specified by <value pack name>
and <value pack version>.

This sub-option can be used alongside the following options:

 -w, --workingMemory

 -c, --clean

 -r, --reload

 -dep, --deploy

 -undep, --undeploy

 -start, --start

 -stop, --stop

 -rl, --ruleLogging

 -sl, --scenarioLogging

 -startflow, --startflow

 -stopflow, --stopflow

 -resyncflow, --resyncflow

 -statusflow, --statusflow

-s, --stats

-vpv <value pack version> Used in conjunction with the -vpn sub-option, this sub-

option selects the value pack specified by <value pack name>
and <value pack version>.

This sub-option can be used alongside the following options:

 -w, --workingMemory

 -c, --clean

 -r, --reload

 -dep, --deploy

 -undep, --undeploy

 -start, --start

 -stop, --stop

 -rl, --ruleLogging

 -sl, --scenarioLogging

 -startflow, --startflow

 -stopflow, --stopflow

 -resyncflow, --resyncflow

 -statusflow, --statusflow

 -a, --audit

-s, --stats

-scenario <scenario name> Used in conjunction with the -vpn, and -vpv sub-options, this

sub-option selects the scenario specified by <value pack
name>, <value pack version>, and <scenario name>.

This sub-option can be used alongside the following options:

 -w, --workingMemory

 -c, --clean

UCA for EBC Administration 25

 -r, --reload

 -rl, --ruleLogging

-sl, --scenarioLogging

-rule <rules file identifier> Used in conjunction with the -vpn, -vpv, and -scenario sub-
options, this sub-option selects the rules file specified by

<value pack name>, <value pack version>,

<scenario name>, and <rules file

identifier>.

This sub-option can be used alongside the following options:

 -r, --reload

The rules file identifier is the name that is associated with a
rules file for a specific scenario (see

ValuePackConfiguration .xml file).

-flow <mediation flow name> Used in conjunction with the -vpn, and -vpv sub-options, this
sub-option selects the mediation flow specified by <value
pack name>, <value pack version>, and <mediation flow
name>.

This sub-option can be used alongside the following options:

 -startflow, --startflow

 -stopflow, --stopflow

 -resyncflow, --resyncflow

 -statusflow, --statusflow

The mediation flow name is the name that is associated with
a specific mediation flow (see

ValuePackConfiguration .xml file).

-conf <configuration file identifier> Used in conjunction with the -vpn, -vpv, and -scenario sub-
options, this sub-option selects the rules file specified by
<value pack name>, <value pack version>, <scenario name>,

and <configuration file identifier>.

This sub-option can only be used alongside the following
options:

 -rc, --reloadConf

The configuration file identifier is either:

 One of the keywords :

 filter

 mapper

 specific

 template

 the filename of a specific configuration file

 the name of the template

UCA for EBC Administration 26

are selected.

The uca-ebc-admin tool has some configuration properties defined in the ${UCA_EBC_INSTANCE}/conf/uca-

ebc.properties file, but these properties are FOR INTERNAL USE ONLY, and are not meant to be updated.

The following table lists these properties for reference only:

Table 6: Properties for uca-ebc-admin in uca-ebc.properties file

Property name Explanation

uca.ebc.jmx.url Default value :
service\:jmx\:rmi\://${uca.ebc.serverhost}/jndi/rmi\://${uca.ebc.serverhost}\:${uca.ebc.jmx.rmi.port}/u
ca-ebc

FOR INTERNAL USE ONLY. DO NOT UPDATE THE VALUE OF THIS PROPERTY.

2.2.4 uca-ebc-instance

The uca-ebc-instance command-line tool provides options to create, delete, list or configure instances of UCA for EBC
Server.

Instances are created in the ${UCA_EBC_DATA}/instances directory. At installation, a single instance is

default

To execute the uca-ebc-instance tool, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-instance <options>

<options> is a list of valid options for the uca-ebc-instance tool

The following table lists the main options of the uca-ebc-instance tool:

Table 7: Main options for the uca-ebc-instance tool

Option name Description

-h This option displays the uca-ebc-instance tool usage

message

-l This option lists all available instances.

-a <instance-name> This option creates a new instance named <instance-name>

 See Notes: (1) (2)

-d <instance-name> This option deletes an existing instance named <instance-
name>.

-r <old-name> <new-name> This option renames an existing instance named <old-name>

to <new-name>. Note that <new-name> should not already
exist.

UCA for EBC Administration 27

-s <instance-name> This option sets the default instance to use to be: <instance-
name>.

 See Note: (3)

NOTE:

(1) When creating a new instance, the root folder for the new instance is created. This folder is referred to as

${UCA_EBC_INSTANCE} in this document.

(2) When creating a new instance, please make sure that there is no port conflict with other applications running on
your server.

 (3 - -ebc, uca-ebc-admin, uca-ebc-injector, or the uca-ebc-backup tool,
the default instance is used.

Please refer to chapter 3.1 Multiple instances configuration for more information on how to configure multiple instances
of UCA for EBC.

2.2.5 uca-ebc-backup

This command-line tool provides the ability to backup and restore UCA for EBC Server instances.

To execute the uca-ebc-backup tool, please use the following commands:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-backup <command> <options>

<command> is one of [-b | -backup | -r | -restore | -l | -list]

<options> is a list of valid options for the command

2.2.5.1 Backing up

When the b | -backup option is given to the uca-ebc-backup tool, a backup of the data directory for a specific instance is

performed (excluding the logs and work subdirectories). In order to do so, the uca-ebc-backup tool compresses the
instance directory hierarchy and stores the resulting file into a directory of the us

If the UCA for EBC Topology Extension is installed along with UCA for EBC Server and the neo4j Server is configured as
embedded, the neo4j subdirectory is also backed up. The backup of the neo4j subdirectory is done using the neo4j
Enterprise backup utility, which performs a full backup without acquiring any locks, thus allowing for continued operations
on the neo4j instance.

Please make sure that UCA for EBC server is up and running when neo4j is embedded before proceeding with a backup.
(See Note below)

To back up a UCA for EBC instance, please execute the following command:

UCA for EBC Administration 28

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-backup –b|-backup <options>

The following table lists the options of the uca-ebc-backup tool for backing up UCA for EBC instances:

Table 8: Options for backing up UCA for EBC instances using the uca-ebc-instance tool

Option name Description

-h This option displays the uca-ebc-backup tool usage
message

-i <instance-name> This option specifies the instance of UCA for EBC to backup.
If it is not specified, the default instance is used.

-f|-from <directory> This option specifies the UCA for EBC data directory. If it is

not specified, the ${UCA_EBC_DATA} directory is used.

-t|-to <directory> This option specifies the directory where to store the backup
file. If it is not specified, the

${UCA_EBC_DATA}/backup directory is used.

-n|-name <name> This option specifies the name of the file to use as the

backup file. If it is not specified, the name of the file is
generated automatically using the following pattern:
%instance-%date-%time.

NOTE:

When UCA for EBC is not running during the backup procedure, it is not a problem: a warning is displayed even
though the neo4j database is backed up properly.

Important: if your neo4j database is located outside of the ${UCA_EBC_INSTANCE} directory (for example if

you set the value of the uca.ebc.topology.location property to /my-absolute-path in the

${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file), the backup tool will keep a copy in a

subdirectory of the ${UCA_EBC_INSTANCE} directory.

2.2.5.2 Restoring

When the r | -restore option is given to the uca-ebc-backup tool, a specific instance of UCA for EBC is restored from a

compressed file previously created by the uca-ebc-backup tool.

Restoring a backup file is only supported when UCA for EBC server is not running. When UCA for EBC server instance is

running, restoring a backup of that instance will result in unexpected behavior.

Restoring a backup of a UCA for EBC instance results in the current configuration of neo4j being replaced by the backup.
(See Note (1) below)

To restore a UCA for EBC instance from a backup file, please use the following command:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-backup –r|-restore –name filename <options>

UCA for EBC Administration 29

The following table lists the options of the uca-ebc-backup tool for restoring UCA for EBC instance backup files:

Table 9: Options for restoring UCA for EBC instances using the uca-ebc-instance tool

Option name Description

-h This option displays the uca-ebc-backup tool usage
message

-n | -name <name> This option is mandatory and specifies the fully qualified
name of the backup file to restore.

-t | -to <directory> This option specifies the UCA for EBC data directory where
to restore the backup file. If it is not specified,
${UCA_EBC_DATA} is used.

 See Note below

NOTE:

(1) The restore mechanism does restore the neo4J DB in the ${UCA_EBC_INSTANCE}/neo4j directory which is the
default location of the neo4j DB.

If you have the location of neo4j DB outside of ${UCA_EBC_INSTANCE} (for example if you specified

uca.ebc.topology.location=/my-absolute-path in the uca-ebc.properties file), you will have to manually

copy the contents of the neo4j subdirectory to the /my-absolute-path directory

(2) Be careful! The backup file contains the instance name. If an instance with the same name exists when an

instance is restored, the existing instance will be overwritten
However, please note that the current logs and work directories are not removed

2.2.5.3 Listing the available backups

When the l | -list option is given to the uca-ebc-backup tool, all compressed backup files are listed.

It is helpful to run this command before restoring a backup to know what backup files are available. It may also be helpful
if you need to do some cleanup of the backup files.

The list is sorted by creation time. It is up to the end-user to clean the backup directory when backup files become
irrelevant and should be removed.

To list all available UCA for EBC instance backup files, please use the following command:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$_uca-ebc-backup –l|-list <options>

The following table lists the options of the uca-ebc-backup tool for listing available backup files:

Table 10: Options for listing the available UCA for EBC instance backups using the uca-ebc-backup tool

UCA for EBC Administration 30

Option name Description

-h This option displays the uca-ebc-backup tool usage

message

-f|-from <directory> This option specifies the directory where the backup files are
stored. If it is not specified, the ${UCA_EBC_DATA}/backup
directory is used.

2.3 UCA for EBC User Interface

In addition to the command-line tools, the web-based user interface of UCA for EBC also provides administration,
monitoring and troubleshooting capabilities for the UCA for EBC product.

NOTE: For more information on how to configure UCA for EBC at the value pack or scenario level please refer to:

[R3] HPE UCA for EBC User Interface Guide.

UCA for EBC Administration 31

Chapter 3

UCA for EBC Configuration

UCA for EBC can be configured using properties located in configuration files.

The following chapters describe all the properties that can be set to configure UCA for EBC at the application level using

configuration files (usually located in the ${UCA_EBC_INSTANCE}/conf/ folder). Additional configuration can be

performed at the value pack and scenario level.

NOTE:

For more information on how to configure UCA for EBC at the value pack or scenario level please refer to: [R3] HPE

UCA for EBC User Interface Guide.

3.1 Multiple instances configuration

Since UCA-EBC V2.0, it is possible to configure multiple instances on a same server. There is a command line tool for
managing those instances: uca-ebc-instance.
Please refer to Chapter 2.2.4 uca-ebc-instance for more information on how to use this tool.

When creating a new instance of UCA for EBC, the port numbers specified in the

${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file are automatically tuned so that they do not

interfere with ports of existing instances of UCA for EBC. They are adjusted based on default port numbers delivered in

the ${UCA_EBC_HOME}/defaults/conf/uca-ebc.properties file.

For example, such ports may have following values (the port numbers in the example below correspond to a 3rd instance
of UCA for EBC):

uca.ebc.jms.broker.port=61866

uca.ebc.jmx.rmi.port=1300

uca.gui.port=9088

However, you have to make sure that the above ports do not conflict with ports used by other applications on your server.

If you have added other ports in your properties (for example for topology extension), please make sure to tune these
ports accordingly.

uca.ebc.topology.webPort=7675

In the same way, the port numbers in the ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml file are

automatically tuned.

The Port property for the CHAINSAW appender specified in the ${UCA_EBC_INSTANCE}/conf/uca-ebc-

log4j.xml file should be different for each instance of UCA for EBC:

<param name="Port" value="4745"/>

UCA for EBC Administration 32

3.2 Configuration files

3.2.1 uca-ebc.properties file configuration

The ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file contains the different properties that can be set
for an instance of UCA for EBC Server.

The following tables list the different properties that can be set:

Table 11: Host and Port # properties in the uca-ebc.properties file

Property name Explanation

uca.ebc.serverhost Default value : localhost

This property defines the local host name as used by the JMX (administration) and JMS
(alarm Broker) connection bindings.

DNS name or an IP address (especially if the server has several IP interfaces), depending on
whether UCA for EBC Server should bind to one specific DNS Name/IP Address or all DNS

Names/IP Addresses configured on the server.

uca.ebc.jms.broker.port Default value : 61666

The port used by the JMS Broker.

The value of this property can be set to an alternate port number in case of port number

conflict with another application on your system.

uca.ebc.jmx.rmi.port Default value : 1100

The port used by RMI for JMX connections.

The value of this property can be set to an alternate port number in case of port number
conflict with another application on your system.

uca.gui.port Default value : 8888

The local port number used by the embedded UCA for EBC User Interface web server. The
value of this property can be set to an alternate port number in case of port number conflict
with another application on your system.

The URL for connecting to the UCA for EBC User interface is the following:

http://<hostname or IP address>:<port #>/uca

<hostname or IP address> is the actual hostname (full DNS name) or the IP address of the
UCA for EBC Server system.

<port #> is the port number for UCA for EBC User Interface set by the uca.gui.port property

(By default: 8888 for the default instance of UCA for EBC).

If you change the uca.ebc.serverhost, or uca.ebc.jms.broker.port properties, the UCA for EBC Channel Adapter
configuration must be changed accordingly (only if you use OSS Open Mediation as mediation layer). The uca-ebc-
ca.properties file of the UCA for EBC Channel Adapter must be checked and changed if required:

UCA for EBC Administration 33

UCA EBC Server to connect to

uca.ebc.jms.broker.host=localhost

uca.ebc.jms.broker.port=61666

The default location for the uca-ebc-ca.properties file of the UCA for EBC Channel Adapter is the following:

/var/<OSS Open Mediation root directory>/containers/instance-0/ips/uca-ebc-

ca-3.4/etc/uca-ebc-ca.properties

Where:

 <OSS Open Mediation root directory> stands for the OSS Open Mediation installation root directory, which, by default,
translates to the /opt/openmediation-71 directory

 instance-0 is the OSS Open Mediation container instance folder name. Depending on your configuration, the
container number could be different than 0. If this is the case, please adjust the name of the container instance folder
accordingly

For full details on how to change this file, please refer to: [R4] HPE UCA for EBC Installation Guide.

Table 12: Web GUI properties in the uca-ebc.properties file

Property name Explanation

uca.gui.webapp Default value: webapp/uca-expert-ui.war

The location of the Web application ARchive file of the UCA for EBC User Interface.

uca.ebc.rest.api Default value: webapp/uca-ebc-rest-api.war

This value is by default commented. This is the location of the Web application ARchive file
of the UCA for EBC REST Interface.

For more information, please refer to: [R1] HPE UCA for EBC Reference Guide

Table 13: Collector properties in the uca-ebc.properties file

Property name Explanation

collector.logger.enabled Default value: false

When set to true, collector logging is enabled. All alarms sent by OSS Open
Mediation to UCA for EBC and alarms injected into UCA for EBC using the uca-
ebc-injector tool, will be logged to a file at the following location:
${UCA_EBC_INSTANCE}/logs/uca-ebc-collector.log

collector.measurementrate.enabled Default value: false

When set to true, event rate measurement is enabled for the UCA for EBC
collector component. The collection statistics data are available either through
JMX (using the standard Java jconsole or jvisualvm tool for example), the uca-

ebc-admin tool, or the UCA for EBC User Interface.

collector.messages.validation Default value: true

When set to true, validation of all events (Alarms) coming into UCA for EBC is

enabled. Validation errors are reported in the statistics of the Collector both at
the Java JMX Console and UCA for EBC User Interface.

UCA for EBC Administration 34

Validation errors can occur when Alarms that do not conform to the UCA for
EBC Alarm XML schema are received by UCA for EBC.

For more information on the UCA for EBC Alarm XML schema, please refer to:

[R1] HPE UCA for EBC Reference Guide.

Table 14: UMB Received Events

Property name Explanation

received.events.logger.enabled Default value: false

When set to true, logging is enabled. All events collected by UCA for EBC through
the UMB UCA adapter, will be logged to a file at the following location:
${UCA_EBC_INSTANCE}/logs/uca-ebc-received-events.log

Table 15: Action Manager properties in the uca-ebc.properties file

Property name Explanation

action.threads Default value: 20

This property defines the size of the thread pool size (in number of threads) of the UCA for
EBC Action Manager component. These threads are in charge of processing asynchronous

actions. This property can be tuned up/down in case you need more/less threads to process
a large/small number of asynchronous actions in parallel.

action.timeout Default value: 60000 (ms)

This property defines the default timeout for actions (in milliseconds) processed by the UCA
for EBC Action Manager component. If an action exceeds the timeout, then the action fails
with a status explanation indicating that a timeout has run out.

This default action timeout can be overwritten for any single action by using the public

void setActionTimeout(int actionTimeout) method of any Action

object. The actionTimeout parameter is also in milliseconds.

Table 16: Rule Engine logger properties in the uca-ebc.properties file

Property name Explanation

engine.logger.enabled Default value: false

When set to true, scenario-specific Drools engine logging is enabled. This setting affects all
scenarios of all value packs.

Scenario-specific engine log files are named logEngine_<scenario name>.log and

are located in the ${UCA_EBC_INSTANCE}/logs directory. Scenario-specific engine log

files contain standard Drools engine log entries specific to a scenario.

These log files can be easily displayed in Eclipse IDE using the Audit view, provided you
have installed the Drools Eclipse plugin. This view is show by default if you switch to the
Drools perspective.

engine.logger.interval Default value: 1000

This property represents the interval (in milliseconds) at which engine log entries are written
to the scenario-specific engine log.

UCA for EBC Administration 35

The uca-ebc.properties file also contains topology related properties. These properties, prefixed either

uca.ebc.topology or neo4j, are related to the UCA for EBC Topology Extension product. These properties are described in

the UCA for EBC Topology Extension guide.

For more information on how to set these properties to configure the UCA for EBC Topology Extension product, please

refer to: [R5] HPE UCA for EBC Topology Extension Guide.

The property named uca.ebc.version in the uca-ebc.properties is no more used by the UCA for EBC Server

product V3.4.

NOTE:

UCA for EBC Server must be restarted in order for any change to the uca-ebc.properties file to be taken

into account.

For non-stop update of some of the properties, you can use the uca-ebc-admin tool, or the JMX interface (with
jconsole or jvisualvm).

Please see section 2.2.3 uca-ebc-admin t of properties that can be reloaded using
the uca-ebc-admin command-line tool.

Please see section 5.1.3 JMX Console for more information on the list of properties that can be updated at the Java
JMX Console.

3.2.2 ActionRegistry.xml file configuration

UCA for EBC value pack scenarios have the ability to send action requests to be executed by the mediation layer

associated with the UCA for EBC Server:

 Either OSS Open Mediation V7.2
 Or UMB V1.1

Whether the actions are sent to OSS Open Mediation or to UMB depends on the action reference used by the action.

Since UCA for EBC V3.3 there are two types of action references that can be defined in the ActionRegistry.xml

file:

 OSS Open Mediation action references

 UMB action references

 If an action is created based on an OSS Open Mediation action reference then it will be executed on OSS Open

Mediation. On the other hand, if the action is created based on an UMB action reference then it will be executed on

UMB.

 The next chapters will describe how to create both OSS Open Mediation and UMB action references.

NOTE: In order for UMB actions to be used, it is necessary that the embedded UCA for EBC UMB Adapter be

started, i.e. the use.new.generation.adapter property must be set to true in the uca-

ebc.properties file.

The actions are executed by an OSS Open Mediation Channel Adapter (or UMB Adapter) on the mediation layer. Action
replies are then returned to the scenario that sent the action requests.

UCA for EBC Administration 36

Figure 1: ActionRegistry.xml file

It is important to notice that there are 2 sections in the ActionRegistry.xml file. A first section for OSS Open

Mediation action, and a second section for UMB actions. Action references can be defined in both sections but the name
of action references throughout the whole file must be unique: an OSS Open Mediation action reference cannot have the
same name as an UMB action reference.

The default configuration for this file can be retrieved from the ${UCA_EBC_HOME}/defaults/conf folder in

case you want to revert back to the default configuration.

The ActionRegistry.xml file is an UCA for EBC application instance level configuration file. It is shared by all UCA

for EBC value packs running on the same UCA for EBC Server instance.

NOTE: UCA for EBC Server must be restarted in order for any change to the ActionRegistry.xml file to be
taken into account, unless you use the Java JMX Console to refresh the UCA for EBC Action Manager with the

contents of the ActionRegistry.xml file.

Please see learn how to refresh the UCA for EBC Action

Manager with the contents of the ActionRegistry.xml file using the Java JMX Console.

3.2.2.1 Defining OSS Open Mediation action references

UCA for EBC value pack scenarios use web services to communicate with the Action Service web service of a Channel
Adapter, typically the UCA for EBC Channel Adapter.

UCA for EBC Administration 37

For these actions to be properly routed to the mediation layer and then to the correct Channel Adapter and target

application, the file ${UCA_EBC_INSTANCE}/conf/ActionRegistry.xml must be configured correctly.

The OSS Open Mediation section of the ActionRegistry.xml

ActionRegistry.xml .

3.2.2.1.1 Defining (OSS Open Mediation) Mediation Value Packs

ActionRegistry.xml file describes the properties of a gateway to access
the Action Service web service on a UCA for EBC Channel Adapter deployed on OSS Open Mediation V7.2.

This gateway will be able to process action requests on the mediation layer by forwarding the action requests to the

proper Channel Adapter on OSS Open Mediation V7.2 for processing.

Each OSS Open Mediation <MediationValuePack

…>…</MediationValuePack> XML element.

Each <MediationValuePack …>…</MediationValuePack> XML element defined in the

ActionRegistry.xml file has the following attributes:

 MvpName: You can give any value to this property (the value is not bound to anything). However, it is recommended
to use the name of the Channel Adapter that will be targeted by the action requests. For example:

o

o apter)
 MvpVersion: You can give any value to this property (the value is not bound to anything). However, it is

recommended to use the version of the Channel Adapter that will be targeted by the action requests. For example:
o or
o 2.1 or

o

 brokerURI: This property contains the correct URI for connecting to the JMS Broker of the OSS Open Mediation V7.2
container instance that contains a UCA for EBC Channel Adapter. By default the port number of the JMS Broker of
OSS Open Mediation V7.2 container 0 is 10000. To verify what port number is used for your OSS Open Mediation
V7.2 container instance, please check the value of the activemq.port property in the
/var/opt/openmediation-V72/containers/instance-<instance

number>/conf/servicemix.properties file.

JMS Broker URIs have the following pattern:

tcp://<hostname or IPaddress>:<port#> or

failover://tcp://<hostname or IPaddress>:<port#> for the failover URI

where:

<hostname or IP address> is the actual hostname (full DNS name) or the IP address of the OSS Open

Mediation V7.2 system.

<port #> is the port number of the JMS Broker of the OSS Open Mediation V7.2 container instance that contains a

UCA for EBC Channel Adapter. The default port # is 10000 for container instance 0.

The brokerURI property is used to connect to the Alarms JMS topic of the UCA for EBC Channel Adapter when using the

standard UCA for EBC OpenMediationAlarmForwarder Java class for forwarding alarms to OSS Open

Mediation V7.2.

UCA for EBC Administration 38

For more information on how to forward alarms, please refer to [R2] HPE UCA for EBC Value Pack

Development Guide.

 url: This property contains the correct URL for connecting to the Action Service web service on a UCA for EBC
Channel Adapter. For example, if the UCA for EBC Channel Adapter is on localhost and uses the default port number

for its Action Service web service:

 http://localhost:26700/uca/mediation/action/ActionService?WSDL

An incorrect value for the url property will result in action requests not being able to be processed on the mediation

layer. Please verify this url using a web browser before using it in the ActionRegistry.xml file.

NOTE:

Action Service web service URLs have the following pattern:

http://<hostname or IPaddress>:<port#>/uca/mediation/action/ActionService?WSDL

<hostname or IP address> is the actual hostname (full DNS name) or the IP address of the UCA for EBC

CA system.

<port #> is the port number for UCA for EBC CA Action Service, 26700 by default. This port number is set in the

<OSS Open Mediation variable root directory>/containers/instance-<container instance number>/ips/uca-ebc-ca-
<UCA for EBC CA version>/etc/action-service.xml file (see the value of the locationURI property of the

cxfbc:consumer XML entity).

<OSS Open Mediation variable root directory> usually translates to

/var/opt/openmediation-V7.2.

Two mediation value packs are defined by default in the ActionRegistry.xml file:

 temip mediation value pack, providing a gateway to a TeMIP Channel Adapter for executing TeMIP

Alarm Object directives, TeMIP Trouble Ticket directives, and alarm collection flow

creation/deletion/resynchronization

 exec ing a gateway to an Exec Channel Adapter for executing command-

line interface executables/commands

Each mediation value pack can contain one or more action references. Action references are explained in the next section.

3.2.2.1.2 Defining (OSS Open Mediation) Action References

OSS Open Mediation action references define references to be used in the Drools rules files (or in the Java code executed
by the rules) associated to scenarios of UCA for EBC value pack for executing synchronous/asynchronous action on
products (TeMIP for example) connected to OSS Open Mediation V7.2 via their own Channel Adapter.

Below is an example of how action references can be used in UCA-EBC Value Pack code (we assume in this example that

TeMIP_AO_Directives_localhostNOM

ActionRegistry.xml file)

Basically you need to write the following code in your rules file:

Action action = new Action("TeMIP_AO_Directives_localhostNOM");

http://localhost:26700/uca/mediation/action/ActionService?WSDL

UCA for EBC Administration 39

The action reference called TeMIP_AO_Directives_localhostNOM is used when creating an Action Java

Object in the rules files.

Once an Action object is created, you can specify the parameters that will define what action to perform, in the following
example a TeMIP Alarm Object directive:

action.addCommand("directiveName", "ACKNOWLEDGE");

action.addCommand("entityName", a.getIdentifier());

action.addCommand("UserId", "UCA EBC");

Then, you need to execute the Action. Both synchronous and asynchronous actions are possible:

either:

//synchronous execution

action.executeSync();

or:

//asynchronous execution

action.executeAsync(AODirectiveKey.ENTITY_NAME);

CAUTION: A synchronous Action may block the on-going correlation processing as long as the action is not
achieved.

For more information on synchronous and asynchronous actions (including how to use synchronization keys for

asynchronous actions), please refer to [R1] HPE UCA for EBC Reference Guide.

OSS Open Mediation action references are defined in the ActionRegistry.xml file inside a

<MediationValuePack> </MediationValuePack> section. Each OSS Open Mediation action reference is

defined by an <Action>…</Action> XML element.

Each <Action>…</Action> XML element defined in the ActionRegistry.xml file has the following

properties:

 actionReference: this is the name of the action reference to use in the Drools rules files associated with scenarios of

UCA for EBC value pack

An incorrect value for the actionReference property will result in action requests not being able to be processed on the
mediation layer. If that happens, please check uca-ebc.log file for errors and verify that value of the actionReference
property is in line with the action reference used in the Drools rules files (or in the Java code executed by the rules) of the
scenarios of your UCA for EBC value pack(s).

Each <Action>…</Action> XML element defined in the ActionRegistry.xml file also defines the

following sub-elements:

serviceName: this is a valid name of service (type of action) implemented by the target Channel Adapter (TeMIP CA,
Exec CA, etc.). This service name is determined by the target Channel Adapter and the services it provides. For example:

 The TeMIP Channel Adapter provides the following services:

 aoDirective, for executing Alarm Object (AO) directives

 ttDirective, for executing Trouble Ticket (TT) directives

UCA for EBC Administration 40

 subscriptionManagement, for executing alarm collection flow

creation/deletion/resynchronization

 The Exec Channel Adapter provides the following services:

 commandsExecution, for executing command-line interface

executables/commands

An incorrect value for the serviceName property will result in action requests not being able to be
processed on the mediation layer. Please verify that value of the serviceName property is valid for the
target Channel Adapter by reviewing the target Channel Adapter documentation.

NmsName: hostname or IP address of the system targeted by the target Channel Adapter. This property is used for
information only. It is not bound to anything.

3.2.2.2 Defining UMB action references

From UCA for EBC point of view, UMB action references work exactly the same way as OSS Open Mediation action
references.

UMB action references define references to be used in the Drools rules files (or in the Java code executed by the rules)
associated to scenarios of UCA for EBC value pack for executing synchronous/asynchronous action on products (TeMIP

for example) connected to UMB V1.1 via their own UMB Adapter.

Below is an example of how action references can be used in rules files (we assume in this example that an action

TeMIP_AO_Directives_localhost ActionRegistry.xml

file)

Basically you need to write the following code in your rules file:

Action action = new Action("TeMIP_AO_Directives_localhost");

TeMIP_AO_Directives_localhost

in the rules files.

Once an Action object is created, you can specify the parameters that will define what action to perform, in the following
example a TeMIP Alarm Object directive:

action.addCommand("directiveName", "ACKNOWLEDGE");

action.addCommand("entityName", a.getIdentifier());

action.addCommand("UserId", "UCA EBC");

Then, you need to execute the Action. Both synchronous and asynchronous actions are possible:

either:

//synchronous execution

action.executeSync();

or:

//asynchronous execution

action.executeAsync(AODirectiveKey.ENTITY_NAME);

UCA for EBC Administration 41

CAUTION: A synchronous Action may block the on-going correlation processing as long as the action is not
achieved.

For more information on synchronous and asynchronous actions (including how to use synchronization keys for

asynchronous actions), please refer to [R1] HPE UCA for EBC Reference Guide.

UMB action references are defined in the ActionRegistry.xml file inside the

<UMBActions> </UMBActions> section. Each UMB action reference is defined by an <UMBAction … />

XML element.

Each <UMBAction … /> XML element defined in the ActionRegistry.xml file has the following properties:

 actionReference: this is the name of the action reference to use in the Drools rules files associated with scenarios of

UCA for EBC value pack

An incorrect value for the actionReference property will result in action requests not being able to be processed on
the mediation layer. If that happens, please check uca-ebc.log file for errors and verify that value of the

actionReference property is in line with the action reference used in the Drools rules files (or in the Java code
executed by the rules) of the scenarios of your UCA for EBC value pack(s).

 targetName: this is the name of the target UMB Adapter or UMB Adapter Group of the action: either the name of an

UMB Adapter or the name of an UMB Adapter action group (if load balancing is used). Adapter names and action

group names are defined in the AdapterConfiguration.xml file of UMB Adapters. If an UMB Adapter

name is used, then the action will be executed on a specific UMB Adapter. If an UMB Adapter Group name is used,

then the action will be executed on a randomly selected UMB Adapter part of the group.

 targetActionName: this is the name of the type of action (action service) to be executed on the UMB Adapter or

UMB Adapter Group. Action services are specific to each Adapter. They are defined in the

AdapterConfiguration.xml file of each Adapter. For example, the UMB TeMIP Adapter defines the

following action services:

o AOAction, for executing Alarm Object (AO) directives

o TTAction, for executing Trouble Ticket (TT) directives

o PassthroughAction, for executing any directive. The XML of the request must be provided in TWS

XML schema in the rawData of the action request

An incorrect value for either the targetName or the targetActionName property will result in action requests not being
able to be processed on the mediation layer. Please verify that values of the targetName and targetActionName

properties are valid by reviewing the AdapterConfiguration.xml file of the targeted UMB Adapter(s)

3.2.3 uca-ebc-log4j.xml file configuration

The ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml file is the Log4J configuration file for the whole

UCA for EBC instance. It is a standard Apache Log4J configuration file. (1)

This file contains three main sections where the following items are defined:

 Appenders: appenders mainly define where the log messages are sent, and the pattern used for logging the

messages. There are three main appenders defined.

 CONSOLE: for logging to the console
 FILE: for logging to the ${UCA_EBC_INSTANCE}/logs/uca-ebc.log file
 DB: for logging to a database. This log database is used for displaying the logs on the UCA for EBC User

Interface. (2)

UCA for EBC Administration 42

In addition to the three main appenders, a sample CHAINSAW appender is also provided for integration with
the Apache Chainsaw GUI-based log viewer. (3)

 Loggers: loggers are defined by Java package names. Each logger defines its own log level and appender references.

The loggers are grouped into several sections (the different sections are identified by comments in the file):

 Detailed Traces for UCA Scenarios

 Detailed Traces for UCA Components
 Detailed Traces for UCA ClassLoader
 Third Party Products Internals

 Root: the root section defines the default log level and the default appender references to use for logging

You can make your own changes to the ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml file, for

example:

 Modifying existing appenders or creating new ones

 Modifying existing loggers: changing the log level or the appender references
 Adding new loggers, for 3rd party products for example
 Adding new loggers for your own scenarios
 Modifying the default log level and appender references in the root section of the file

Once you have made changes to the ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml file, you either

need to restart UCA for EBC Server or reload the Log4J configuration at the command-line using the uca-ebc-admin tool,
the Java console or the UCA for EBC User Interface.

There are several levels of logging provided by UCA for EBC (4):

 standard application logging
 scenario specific rule logging.

Log files (both standard application log file, and scenario specific log files) are stored in the

${UCA_EBC_INSTANCE}/logs directory or at the UCA for EBC User Interface.

NOTE:

(1) Please see http://logging.apache.org/log4j/1.2/ to learn more about Apache Log4J configuration files.

(2) Please note that for big size of the log the correlation can dramatically slow down due to the cost of every

insertion into the database.

(3) Please see http://logging.apache.org/chainsaw/index.html to learn more about Apache Chainsaw.

(4 the different levels of logging provided by UCA

for EBC (standard application logging, and scenario specific rule logging) and to learn how to enable/disable and
configure these logs

3.2.4 Additional configuration files

Some configuration files are present in addition to the ${UCA_EBC_INSTANCE}/conf/uca-

ebc.properties, ${UCA_EBC_INSTANCE}/conf/ActionRegistry.xml, and

${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml files.

http://logging.apache.org/log4j/1.2/
http://logging.apache.org/chainsaw/index.html

UCA for EBC Administration 43

3.2.4.1 UCA EBC Spring Framework configuration files

UCA for EBC is integrated with Spring Framework. The main components of UCA for EBC are defined using Spring

Framework. Three configuration files located in the ${UCA_EBC_HOME}/conf directory are present by default:

 application-context.xml

 main-context.xml

These files are for INTERNAL USE ONLY and should not be modified.

However, in rare case, for instance when you need to support storing events into a single DB for multiple Value Packs, you
may add some Spring beans in those files.

3.2.5 How to revert back to the default configuration files

A reference copy of of each of the configuration files present in the ${UCA_EBC_INSTANCE}/conf folder can be

found in the ${UCA_EBC_HOME}/defaults/conf folder.

In case you want to revert back the default configuration of any of the configuration files present in the

${UCA_EBC_INSTANCE}/conf folder, you just need to copy the reference copy of the configuration file from the

${UCA_EBC_HOME}/defaults/conf folder to the ${UCA_EBC_INSTANCE}/conf folder.

NOTE:

UCA for EBC Server must be restarted in order for any change to the configuration files in the

${UCA_EBC_INSTANCE}/conf folder to be taken into account (except for the uca-ebc-log4j.xml file for

which a dynamic reload is possible)

3.3 UCA-EBC UMB Mediation Adapter Configuration

The configuration requirements of the UCA-EBC UMB Mediation Adapter are the same as for any other UMB mediation

adapter. It requires a properties file to set the Adapter properties, the Hazelcast.xml file for the Common registry

access, and the AdapterConfiguration.xml file to define the provided services.

All the requested configuration files are searched in the UCA-EBC configuration directory:

${UCA_EBC_DATA}/conf.

3.3.1 The properties file

As the UCA-EBC UMB Mediation Adapter is embedded in the UCA-EBC application, there is no specific

adapter.properties file for this mediation adapter. Instead the properties are defined in the standard uca-

ebc.properties file.

The following properties are defined by default in this file as follow:

UMB Mediation properties

use.new.generation.adapter=true

UMB Consumer properties

consumer.zookeeper.connect=localhost:2181

consumer.zookeeper.session.timeout.ms=6000

consumer.zookeeper.sync.time.ms=203

UCA for EBC Administration 44

consumer.auto.commit.interval.ms=1000

consumer.auto.offset.reset=smallest

UMB Consumer properties

producer.metadata.broker.list=localhost:9092

producer.request.required.acks=1

Please refer to the [R4] HPE UCA for EBC Installation Guide
properties.

3.3.2 The hazelcast.xml file

hazelcast.xml defines how to connect to the UCA for EBC Hazelcast

instance(s).

Please refer to the [R4] HPE UCA for EBC Installation Guide for details on how to configure the

hazelcast.xml file.

3.3.3 The logging configuration file

-EBC configuration file: uca-ebc-log4j.xml

3.3.4 The AdapterConfiguration.xml file

The Adapter configuration file AdapterConfiguration.xml defines the Event flows that UCA-EBC provides.

For every UMB Adapter the AdapterConfiguration.xml -

 made of several UCA-EBC server instances.

3.3.4.1 Defining static flows:

For static Flows the collectorClass must be set to: com.hp.uca.expert.mediation.adapter.UcaStaticCollector

No flow parameters need to be defined.

Here is an example of Static Flow Service definitions for UCA-EBC:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<adapter name="UCA-EBC" version="1.0" xmlns="http://hp.com/umb/config">

 <flowServices>

 <flow name="UcaStaticForwarderFlow" type="Static"

collectorClass="com.hp.uca.expert.mediation.adapter.UcaStaticCollector">

 </flow>

 <flow name="UcaStaticEventForwarderFlow" type="Static"

collectorClass="com.hp.uca.expert.mediation.adapter.UcaStaticCollector">

 </flow>

 </flowServices>

</adapter>

NOTE:

The static flows provided by UCA-EBC do not support resynchronization.

UCA for EBC Administration 45

3.3.4.2 Defining dynamic flows:

Contrary to static flows, with dynamic flows, parameters have to be defined.

Here is an example of a Dynamic Flow Service definition for UCA-EBC:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<adapter name="UCA-EBC" version="1.0" xmlns="http://hp.com/umb/config">

 <flowServices>

 <flow name="DB-Flow" type="Dynamic"

collectorClass="com.hp.uca.expert.mediation.adapter.UcaDbCollector">

 <parameters>

 <parameter key="vp" defaultValue="" />

 <parameter key="notifier" defaultValue="dbNotifier" />

 <parameter key="summarize" defaultValue="false" />

 <parameter key="eligibilityScope" defaultValue="true" />

 </parameters>

 </flow>

 </flowServices>

For more information on DB Flow configuration, please refer to: [R1] HPE UCA for EBC Reference Guide

3.4 High-Availability (HA) configuration

3.4.1 Simple cluster configuration using NFS

The simplest cluster configuration is a set of (minimum 2) members UCA for EBC servers accessing the same Storage
Area Network providing access to a single data storage.

To setup such a cluster configuration, the following steps are required:

 Step 1: Install UCA for EBC using the - See Note (1)

For example, given that /shared/UCA-EBC is the NFS mount point for the UCA for EBC data directory, you

need to execute the following command on all servers:

[root] # install-uca-ebc.sh -d /shared/UCA-EBC

On first installation of UCA for EBC (on server1), the subdirectories under /shared/UCA-EBC are

automatically created. On subsequent installations (on server2 and +), the subdirectories are not recreated
because they already exist. Using this method, you can install an extra server even if UCA for EBC is running on
another server.

 Step 2: Start UCA for EBC on the first server. See Note (2)

[uca@server1] # uca-ebc start

UCA for EBC Administration 46

Server1 Server2

SAN

/shared/UCA-EBC

 Step 3: When server1 is to be stopped for some reason, then server2 is able to recover the work, once started.

[uca@server2] # uca-ebc start

NOTE:

(1 UCA for EBC should have the same uid / gid on all the
servers sharing a same data directory. If this is not the case, UCA for EBC will not be able to recover from one server
to the other due to file ownership issues. It is therefore recommended to use a NIS user account across servers.

(2) Log and work files are stored in a shared NFS data storage. It is not supported to have more than 1 UCA for EBC
server instance running on the same data storage due to possible file synchronization issues.

(3) For more information on High-Availability setup, please refer to: [R1] HPE UCA for EBC Reference
Guide

3.4.2 Neo4j database High-Availability (HA) configuration for Topology
Extension

The simplest configuration of neo4j is to have the database server embedded in UCA for EBC server. As such, it can run

only on a single machine, accessible through a single port. When configured as embedded, the database is stored under

the ${UCA_EBC_INSTANCE}/neo4j directory.

When a simple cluster configuration is used along with an embedded neo4j topology, the High-Availability (HA)

mechanism is implemented by the shared location of the ${UCA_EBC_INSTANCE} directory which includes the neo4j

database. When a member of the cluster starts, it inherits the neo4j database state, i.e. the topology state, from the last
cluster member that stopped.

This solution does not use the HA mechanism of neo4j. (See Note (1) below).

To deploy the UCA for EBC database, i.e. the neo4j database, in a multiple machine setup, you have to tune the

uca.ebc.topology property in the ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file, as follows:

uca.ebc.topology=external

(See Note (1)
below)

UCA for EBC Administration 47

Neo4j HA can be set up to accommodate differing requirements for load, fault tolerance and available hardware. The
typical setup when running multiple Neo4j instances in HA mode is: (See Note (2) below)

 A HTTP REST load-balancer, namely HA proxy
 a single Neo4j master

 0 or more Neo4j slaves

 a mechanism for master election, namely a Coordinator cluster (See Note (3) below)

To configure UCA for EBC to use a Neo4j HA cluster, you need to setup the uca.ebc.topology.serverhost and

uca.ebc.topology.webPort properties in the ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file to be
equal to the Neo4J HA proxy configuration. For example:

uca.ebc.topology.serverhost=server3.local.domain

uca.ebc.topology.webPort=7474

Then, you have to configure the Neo4j cluster to run in HA mode. Please refer to the Neo4j high-availability setup tutorial
for more information. (See Note (4) below)

NOTE:

(1) uca.ebc.topology property in the ${UCA_EBC_INSTANCE}/conf/uca-

ebc.properties file does not currently support the neo4j HA mode.

(2) Suggested reading: http://docs.neo4j.org/chunked/stable/ha.html. Please note that only neo4j-enterprise edition
supports HA features.

(3) The Coordinator function is based on Apache Zookeeper service: http://hadoop.apache.org/zookeeper/

(4) The Neo4j high-availability setup tutorial is available at the following URL:
http://docs.neo4j.org/chunked/stable/ha-setup-tutorial.html

3.5 Backup and restore

3.5.1 Standalone UCA for EBC

A standalone UCA for EBC server is a server running on a single machine. If the UCA for EBC Topology Extension is
installed and configured, the neo4j server is running embedded within UCA for EBC Server. (See Note below)

On both HP-UX and Linux:

To perform a backup/restore, please use the uca-ebc-backup command line tool (Please refer to Chapter 2.2.5 uca-ebc-
backup

On Windows:

To perform a backup/restore, as no command line tool is provided, please use the following procedure:

For backups:

 cd %UCA_EBC_DATA%

 zip all directories (except logs and work) into a backup .zip file, and store it in a safe place

For restores: (Please make sure that UCA for EBC is not running)

http://docs.neo4j.org/chunked/stable/ha.html
http://hadoop.apache.org/zookeeper/
http://docs.neo4j.org/chunked/stable/ha-setup-tutorial.html

UCA for EBC Administration 48

 cd %UCA_EBC_DATA%

 remove all directories (except logs and work)
 unzip the backup .zip file that was created during the backup

NOTE:

neo4j embedded server online backup feature must be activated.

This is done by setting the neo4j.config.online_backup_enabled property to true in the

${UCA_EBC_INSTANCE}/conf/uca-ebc.properties configuration file.

3.5.2 Clustered UCA for EBC

A clustered UCA for EBC server is a set of multiple servers running on separate machines but using the same data
directory under NFS. This is described in Chapter 3.4.1 Simple cluster configuration using NFS

As data is stored on a unique place, it is only necessary to perform the backup once for the cluster, on any machine. To

perform a backup/restore, please use the procedure explained above (in Chapter 3.5.1 Standalone UCA for EBC
applicable in a clustered context as well.

3.5.3 UCA for EBC with external topology server

A UCA for EBC server using an external neo4j topology server has to be backed up (or restored) in two steps.

3.5.3.1 First step: backup/restore of UCA for EBC

To backup/restore UCA for EBC, use the procedure explained in Chapter 3.5.1 Standalone UCA for EBC
procedure will back up everything that is stored in the UCA for EBC instance directory, except the neo4j database, which
is external.

3.5.3.2 Second step: backup/restore of neo4j database

When neo4j server is configured to be external to UCA for EBC, it is necessary to backup/restore this external machine
separately. Please be aware that the neo4j backup utility is only available when using the Enterprise Edition of Neo4j.

When neo4j database is embedded into UCA for EBC server, please follow the steps described below to perform a
backup/restore of the neo4j database.

For backups:

 Do a full backup using the neo4j-backup command line tool on a safe new directory
(see Note (1) below)

For restores:

 Restore the backup by replacing the current database (usually stored in

${NEO4J_HOME}/data/graph.db) by the contents of the directory generated during the

backup.

UCA for EBC Administration 49

NOTE:

(1) neo4j embedded server online backup feature must be activated.
This is done by setting the neo4j.config.online_backup_enabled property to true in the

${UCA_EBC_INSTANCE}/conf/uca-ebc.properties configuration file

UCA for EBC Monitoring 50

Chapter 4

UCA for EBC Monitoring

4.1 Monitoring the alarm flow in real-time

The purpose of monitoring the alarm flow is to offer any integrator and/or rules designer (at development time) or any
user (in production) the capability to better understand what happens in the UCA for EBC engine (in particular in each
rule engine/working memory of a scenario).

A UCA for EBC solution can be complex including several values packs, each of them containing several scenarios. At

each level, filtering at the scenario level indicates the scope of interest of the scenario, in terms of what type of events the
scenario will process.

Monitoring the alarm flow is key to a better understanding of what goes on inside UCA for EBC in terms of processing of
the alarm flow in real-time, when a complete UCA for EBC solution, with possibly several value packs and scenarios, is
deployed.

Monitoring the alarm flow involves taking measurements of the alarm flow at several key processing points in the UCA for
EBC solution:

 At the UCA for EBC Collector layer, i.e. alarm collection layer (this component is the entry point for
alarms/events into UCA for EBC)

 At the UCA for EBC Dispatcher layer, i.e. alarm dispatcher layer (this component processes
alarms/events sent by the UCA for EBC Collector and dispatches them to value packs and scenarios)

 At the Value Pack layer
 At the Scenario layer, i.e. the Drools engine layer

UCA for EBC Monitoring 51

-of-

Figure 2: UCA for EBC Monitoring the Alarm Flow

Monitoring of the alarm flow is performed at the Collector layer, Dispatcher layer, Value Pack layer and Scenario / Rule
engine layer is shown in the above figure.

These measurements of the alarm flow are presented as statistics, and counters, and can be displayed with the Java JMX

Console, the uca-ebc-admin command line tool and through the UCA for EBC User Interface (in the Troubleshooting /
Statistics panel).

The following sections describe, for each layer of the UCA for EBC -of-
statistics about the alarm flow are available. These statistics can help developers and integrators better understand how
scenarios consume the input Event/Alarm stream. Monitoring these statistics can provide insight into the internal
processing of a scenario in real time that can help troubleshooting issues or possibly lead to improvements in terms of
performance.

NOTE: For more information on the UCA for EBC User Interface, please refer to [R3] HPE UCA for EBC User
Interface Guide

Please see section for more information on the statistics, and counters displayed at the Java JMX
Console

4.1.1 Collector layer

The Collector component is responsible for receiving and validating incoming Events/Alarms from the mediation layer
(when the mediation layer is OSS Open Mediation V7.2) and forwarding them to the next layer (the Dispatcher layer). The

following indicators can help monitoring the alarm flow at the Collector layer in real-time:

UCA for EBC Monitoring 52

 How many objects (alarms) were received since startup
 The last time an object (alarm) was received

 How many errors occurred during alarm validation
 The last time an error occurred during alarm validation

NOTE: These statistics can be displayed both at the Java JMX Console and at the UCA for EBC User Interface (in
the Troubleshooting / Statistics panel)

For more information on the UCA for EBC User Interface, please refer to: [R3] HPE UCA for EBC User
Interface Guide

4.1.2 Dispatch layer

The Dispatcher is responsible for storing incoming events (Alarms), analyzing and dispatching these events to the

running value packs and scenarios. The following indicators can help monitoring the alarm flow at the Dispatcher layer in
real-time:

 Current number of objects (alarms) dispatched

 Last time an object (alarms) has been dispatched
 Rate of alarms reception

NOTE: These statistics can be displayed both at the Java JMX Console and at the UCA for EBC User Interface (See
5.1.2)

4.1.3 Value Pack layer

Additional statistics regarding the alarm flow are available at the Value Pack layer:

 How many objects (alarms) were received since startup (per alarm type)

 Last time an object (alarm) was received

 Alarm input rate
 Percentage of events received by the Value Pack compared to the total of events received by the UCA

for EBC Dispatcher

NOTE: These statistics can be displayed both at the Java JMX Console and at the UCA for EBC User Interface (See

5.1.2

4.1.4 Scenario/Engine layer

Additional statistics regarding the alarm flow are available at the Scenario (Drools engine) layer:

 Number of facts* inserted into Working Memory since startup
 Current number of facts* in real-time

 Last time an object (alarm) was injected, retracted, modified in Working Memory

 Number of facts* retracted from the Working Memory since start-up

 Number of facts* modified in Working Memory since start-up

 Rate of alarms reception

 Percentage of events inserted into Working Memory compared to the total of events received by the
Scenario (this indicator measures what percentage of incoming events are filtered out by the scenario)

* Facts are Drools Working Memory objects. Once any Java object is inserted into Drools Working Memory, it

UCA for EBC Monitoring 53

NOTE: These statistics can be displayed both at the Java JMX Console and at the UCA for EBC User Interface (See
5.1.2

UCA for EBC Troubleshooting 54

Chapter 5

UCA for EBC Troubleshooting

5.1 Troubleshooting tools

Below is the list of tools that you can use to troubleshoot UCA for EBC.

5.1.1 Log files

Log files can be of great help when troubleshooting issues with UCA for EBC. UCA for EBC log files are located in the

${UCA_EBC_INSTANCE}/logs directory.

You can view the log files directly on the file system using any text file editor or you could also use the UCA for EBC User
Interface to view the logs. This latter method for viewing the logs has the advantage of providing easy navigation and

filtering capabilities. The UCA for EBC application log can also be cleaned to focus on new log messages only.

Configuration of the logs is driven by the content of the ${UCA_EBC_INSTANCE}/conf/uca-ebc-

log4j.xml file (1). Several types of logs are available, both at application level and at scenario level (2).

NOTE:

Please refer to section 3.2.3 uca-ebc-log4j.xml file configuration

${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml file.

Please see section to learn about the different levels of logging provided by
UCA for EBC, how to enable/disable and how to configure these logs.

Recommendation: logging has an impact on performance. To avoid issues, please do not use too much logging on a
production environment.

5.1.2 UCA for EBC Graphical User Interface

The UCA for EBC User Interface provides troubleshooting tools.

At each level, be it application level, value pack level or scenario level, a troubleshooting panel is provided that contains

information that will help to troubleshoot issues with the UCA for EBC application, a specific value pack or a scenario.

The following screenshot shows Troubleshooting/Log panel at application level:

UCA for EBC Troubleshooting 55

Figure 3: Troubleshooting/Log panel at Application level

Each troubleshooting panel at each level (application, value pack, and scenario) contains two sub-panels:

 Statistics subpanel that contains key performance indicators that help understanding the behavior
of UCA for EBC, a value pack or a scenario

 Logs that displays the full UCA for EBC application logs, the Value Pack logs or a scenario
specific logs depending on the level.

UCA for EBC Troubleshooting 56

The following screenshot shows Troubleshooting/Statistics panel at application level:

Figure 4: Troubleshooting/Statistics panel at Application Level

NOTE: For more information on how to connect to the UCA for EBC User Interface or to learn about the

troubleshooting tools available in the UCA for EBC User Interface, please refer to [R3] HPE UCA for EBC User

Interface Guide.

5.1.3 JMX Console

To start the Java JMX Console, either locally on the system hosting the UCA for EBC Server or remotely from another

system (in which case you will need to adjust the JMX URL accordingly), please execute the following commands:

On both HP-UX and Linux:

$ $JAVA_HOME/bin/jconsole

:

service:jmx:rmi://<hostname or IP address>/jndi/rmi://<hostname or IP address>:<port #>/uca-ebc

<hostname or IP address> is the actual hostname (full DNS name) or the IP address of the UCA for EBC

Server system. The default value is localhost.

<port #> is the port number for UCA for EBC Server RMI port, 1100 by default for the default instance. Please check

operty in the ${UCA_EBC_INSTANCE}/conf/uca-

ebc.properties UCA for EBC Server is using.

UCA for EBC Troubleshooting 57

Figure 5: Java JMX Console: Connecting to UCA for EBC Server

UCA for EBC, you can go to the MBeans tab to get access to the
managed Java beans that have been defined specifically for administering UCA for EBC.

All managed beans for UCA for EBC are located under the uca_ebc folder, as seen in the following screenshot:

UCA for EBC Troubleshooting 58

Figure 6: Java JMX Console: UCA for EBC MBeans

Under the uca_ebc folder, there are several folders providing information/statistics*/monitoring/administration features
on:

 Internal UCA for EBC components:
o Action Manager

o Collector
o Dispatcher
o Properties
o Server
o Value Pack Manager

 UCA for EBC value packs: there is one folder per running pack

The following sections will provide more details on these folders.

NOTE:

* The statistics available in the Java Console are also available at the UCA for EBC User Interface. Some additional
features are available in the Java Console, for example to reset the statistics counters or to get information about
internal UCA for EBC components that are not yet available at the UCA for EBC User Interface..

UCA for EBC Troubleshooting 59

5.1.3.1 Monitoring UCA for EBC internal components

5.1.3.1.1 Monitoring UCA for EBC Action Manager

The UCA for EBC Action Manager is an internal UCA for EBC component that provides the capability to process
asynchronous actions requested in the Drools rules files of an UCA for EBC Value Pack scenario. Asynchronous actions

are created when the following code is present in a Drools rules file of a scenario:

Action action = new Action("TeMIP_AO_Directives_localhost");

action.addCommand("directiveName", "ACKNOWLEDGE");

action.addCommand("entityName", a.getIdentifier());

action.addCommand("UserId", "UCA EBC");

action.executeAsync(AODirectiveKey.ENTITY_NAME);

These asynchronous actions are handled by the UCA for EBC Action Manager internal component and are processed by
the proper Channel Adapter or UMB Adapter on the mediation layer (either OSS Open Mediation V7.2 or UMB V1.1).

In the Java Console, the Action Manager folder contains the following sub-folders:

 Action Queue: this queue contains the list of asynchronous actions that are currently being processed
 Action Statistics: Information about the performance rate of the Action Manager
 Action Threads: Information about the Action Manager thread pool

The following screenshots shows the UCA for EBC Action Manager component at the Java JMX Console:

Figure 7: Java JMX Console: UCA for EBC Action Manager

The following sections will provide more detail on the sub-components of the UCA for EBC Action Manager available at
the Java JMX console.

UCA for EBC Troubleshooting 60

NOTE:

For more information on asynchronous actions please refer to: [R2] HPE UCA for EBC Value Pack

Development Guide.

Action Queue

The Action Queue can be monitored at the Java JMX console using both attributes and operations.

The following table lists the attributes of the Action Queue that are shown on the Java JMX console:

Table 17: Java JMX Console: UCA for EBC Action Manager Action Queue Attributes

Attribute name Settable Description

CurrentSize No The current size of the Action Queue (in number of
asynchronous actions in the queue)

DateLastHighWaterMark No Date and time of the last high water mark for the Action Queue

DateLastPublish No Date and time of the last time an asynchronous action was
added to the queue

DateLastSubscribe No Date and time of the last time an asynchronous action was
removed from the queue to be processed by a thread

DateLastZeroed No Date and time of the last time the Action Queue was empty

HighWaterMark No Value of the last high water mark for the Action Queue (in
number of asynchronous actions in the queue)

HighWaterMarkStillIncreasing No Whether the high water mark for the Action Queue is still
increasing or not

MaxSize No Maximum size of the ActionQueue (in number of
asynchronous actions in the queue)

NumberZeroedSinceLastHighWaterMark No The number of times the Action Queue size was 0 since the

last high water mark

SizeHistory No A history of the size of the ActionQueue (in number of
asynchronous actions in the queue)

TotalObjects No Total number of asynchronous actions that have been added
to the Action Queue since start-up

TotalObjectsSinceLastHighWaterMark No Total number of asynchronous actions that have been added

to the Action Queue since last high water mark

The following table lists the operations that can be executed on the Action Queue using the Java JMX console:

Table 18: Java JMX Console: UCA for EBC Action Manager Action Queue Operations

Operation name Explanation

resetQueueHistory() Resets all Action Queue counters (attributes)

Action Statistics

Action Statistics can be monitored at the Java JMX console using both attributes and operations.

The following table lists the attributes of the Action Statistics that are shown on the Java JMX console:

Table 19: Java JMX Console: UCA for EBC Action Manager Action Statistics Attributes

Attribute name Settable Description

UCA for EBC Troubleshooting 61

ConsolidatedRate No The consolidated (average) performance rate of the Action Manager (in
number of asynchronous actions processed per second)

HighestRate No The highest performance rate of the Action Manager (in number of
asynchronous actions processed per second)

LastRate No The last performance rate of the Action Manager (in number of
asynchronous actions processed per second)

LongestBurstRate No The performance rate of the longest burst of the Action Manager (in

number of asynchronous actions processed per second)

The following table lists the operations that can be executed on the Action Statistics using the Java JMX console:

Table 20: Java JMX Console: UCA for EBC Action Manager Action Statistics Operations

Operation name Explanation

resetRates() Resets all Action Statistics rates (i.e. attributes)

Action Threads

Action Threads can be monitored at the Java JMX console using both attributes and operations.

The following table lists the attributes of the Action Threads that are shown on the Java JMX console:

Table 21: Java JMX Console: UCA for EBC Action Manager Action Threads Attributes

Attribute name Settable Description

FailedActions No The total number of failed asynchronous actions of the Action Manager

NbActiveThread No The current number of active threads in the thread pool of the Action
Manager

NbPoolThread No The total number of threads in the thread pool of the Action Manager

The following table lists the operations that can be executed on the Action Threads using the Java JMX console:

Table 22: Java JMX Console: UCA for EBC Action Manager Action Threads Operations

Operation name Explanation

resetCounters() Resets all Action Threads counters (i.e. attributes)

5.1.3.1.2 Monitoring UCA for EBC Collector

The UCA for EBC Collector is an internal UCA for EBC component that collects all event UCA

for EBC either from the OSS Open Mediation V7.2 mediation layer (events coming from UMB do not go through the
Collector) or from the uca-ebc-injector tool.

Monitoring the UCA for EBC Collector component is akin to measuring the input rate of UCA for EBC.

All incoming events are first validated to weed out invalid/unrecognized types of events. Validation errors will result in the

events being rejected by the Collector.

The following screenshot shows the UCA for EBC Collector component at the Java JMX Console:

UCA for EBC Troubleshooting 62

Figure 8: Java JMX Console: UCA for EBC Collector - Attributes

The UCA for EBC Collector can be monitored at the Java JMX console using both attributes and operations.

The following table lists the attributes of the UCA for EBC Collector that are shown on the Java JMX console:

Table 23: Java JMX Console: UCA for EBC Collector - Attributes

Attribute name Settable Description

AverageEventNbPerMessage No Average number of events(1) per JMS message received by the
collector, i.e. batching factor

CollectorRate No Collector rate is the average event rate going through the Collector (in
events per second)

DateLastMessageValidationError No Date and time of the last event(1) in error (due to validation error)
received by the Collector

DateLastReceivedEvent No Date and time of the last event(1)
Collector

DateLastReceivedMessage No Date and time of the last JMS message(1) received by the Collector

DateLastRejectedEvent No Date and time of the last event(1) rejected by the Collector

DateLastRejectedMessage No Date and time of the last JMS message(1) rejected by the Collector

MessageValidationErrorsNumber No Number of events(1) in error (due to validation error) received by the
Collector

ReceivedEvents No Number of events(1)

ReceivedMessages No Number of JMS messages(1) received by the Collector

RejectedEvents No Number of events(1) (A jected by the Collector

RejectedMessages No Number of JMS messages(1) rejected by the Collector

UCA for EBC Troubleshooting 63

NOTE:

(1) The UCA for EBC Collector receives JMS message which can contain any number of events (Alarms, etc.), i.e. a
batch of events. This explains why there are Collector statistics for both JMS messages and events.

The following table lists the operations that can be executed on the UCA for EBC Collector using the Java JMX console:

Table 24: Java JMX Console: UCA for EBC Collector Operations

Operation name Explanation

resetCounters() Resets all Action Threads counters (i.e. attributes)

NOTE: For more information on the uca-ebc-injector tool please refer to the following section -ebc-

.

5.1.3.1.3 Monitoring UCA for EBC Dispatcher

The UCA for EBC Dispatcher is an internal UCA for EBC component that receives events
UCA for EBC Collector and forwards those events to any eligible scenario (a property of the scenario states whether a
scenario is eligible to receiving incoming events or not) of any value pack currently running on UCA for EBC.

The following screenshot shows the UCA for EBC Dispatcher component at the Java JMX Console:

Figure 9: Java JMX Console: UCA for EBC Dispatcher - Attributes

UCA for EBC Troubleshooting 64

The UCA for EBC Dispatcher can be monitored at the Java JMX console using both attributes and operations.

The following table lists the attributes of the UCA for EBC Dispatcher that are shown on the Java JMX console:

Table 25: Java JMX Console: UCA for EBC Dispatcher - Attributes

Attribute name Settable Description

DispatcherRate No The event rate of the dispatcher (in number of events
per second)

LogEvents Yes A flag indicating whether the Dispatcher should log the
list of events that it processes or not.

THIS ATTRIBUTE IS OBSOLETE. DO NOT USE IT.

Queue_CurrentSize No The current size of the Dispatcher queue (in number of

events)

Queue_DateLastChangeEvent No
added to the Dispatcher queue

Queue_DateLastDeletionEvent No

added to the Dispatcher queue

Queue_DateLastHighWaterMark No The date and time of the last high water mark of the
Dispatcher queue

Queue_DateLastPublish No Date and time of the last time an event was added to
the queue

Queue_DateLastSubscrib No Date and time of the last time an event was removed
from the queue to be processed

Queue_DateLastZeroed No The date and time of the last time the Dispatcher
queue was empty

Queue_HighWaterMark No The value of the high water mark of the Dispatcher
queue (in number of events)

Queue_HighWaterMarkStillIncreasing No Whether the high water mark of the Dispatcher queue
is still increasing or not

Queue_NumberZeroedSinceLastHighWaterMark No The number of times that the Dispatcher queue was
empty since the last high water mark

Queue_SizeHistory No The history of the Dispatcher queue size

Queue_TotalChangesEvents No The total numb
added to the Dispatcher Queue since start-up

Queue_TotalDeletionEvents No
added to the Dispatcher Queue since start-up

Queue_TotalObjects No The total number of
the Dispatcher Queue since start-up

Queue_TotalObjectsSinceLastHighWaterMark No
the Dispatcher Queue since the last high water mark

The following table lists the operations that can be executed on the UCA for EBC Dispatcher using the Java JMX console:

Table 26: Java JMX Console: UCA for EBC Dispatcher - Operations

Operation name Explanation

resetCounters() Resets all Dispatcher counters (i.e. attributes), except the LogEvents
attribute

UCA for EBC Troubleshooting 65

5.1.3.1.4 Monitoring UCA for EBC Properties

The UCA for EBC Properties folder at the Java JMX Console shows the file system location of each sub-folder of the UCA
for EBC application.

The following screenshot shows the UCA for EBC Properties component at the Java JMX Console:

Figure 10: Java JMX Console: UCA for EBC Properties - Attributes

There are no operations that can be executed at the Java JMX Console on the UCA for EBC Properties.

The following table lists the attributes of the UCA for EBC Properties that are shown on the Java JMX console:

Table 27: Java JMX Console: UCA for EBC Properties - Attributes

Attribute name Settable Description

AlarmsDirectory No Default Value: ${UCA_EBC_HOME}/alarms

ApidocDirectory No Default Value: ${UCA_EBC_HOME}/apidoc

ArchiveDirectory No Default Value: ${UCA_EBC_INSTANCE}/archive

BinDirectory No Default Value: ${UCA_EBC_HOME}/bin

ConfigurationDefaultDirectory No Default Value: ${UCA_EBC_HOME}/defaults/conf

ConfigurationDirectory No Default Value: ${UCA_EBC_INSTANCE}/conf

DataDirectory Yes Default Value: ${UCA_EBC_INSTANCE}

DefaultsDirectory No Default Value: ${UCA_EBC_HOME}/defaults

DeployDirectory No Default Value: ${UCA_EBC_INSTANCE}/deploy

ExternalLibDirectory No Default Value: ${UCA_EBC_INSTANCE}/externallib

GettingStartedDirectory No Default Value: ${UCA_EBC_HOME}/gettingStarted

LibDirectory No Default Value: ${UCA_EBC_HOME}/lib

LicensesDirectory No Default Value: ${UCA_EBC_HOME}/licenses

Log4jConfigurationFileUrl No Default Value: file:${UCA_EBC_VAR}/conf/uca-ebc-
log4j.xml

LogDefaultDirectory No Default Value: ${UCA_EBC_HOME}/defaults/logs

UCA for EBC Troubleshooting 66

LogDirectory No Default Value: ${UCA_EBC_INSTANCE}/logs

RootDirectory Yes Default Value: ${UCA_EBC_HOME}

SchemasDirectory No Default Value: ${UCA_EBC_HOME}/schemas

ValuePacksDefaultDirectory No Default Value: ${UCA_EBC_HOME}/defaults/valuepacks

ValuePacksDirectory No Default Value: ${UCA_EBC_INSTANCE}/valuepacks

WebappDirectory No Default Value: ${UCA_EBC_HOME}/webapp

5.1.3.1.5 Monitoring UCA for EBC Server

The following screenshot shows the UCA for EBC Server component at the Java JMX Console:

Figure 11: Java JMX Console: UCA for EBC Server - Operations

The UCA for EBC Server can be monitored at the Java JMX console using operations.

The following table lists the operations that can be executed on the UCA for EBC Server using the Java JMX console:

Table 28: Java JMX Console: UCA for EBC Server - Operations

Operation name Explanation

reloadLog4jConfigurationFile() Reloads the log4J configuration file.

reloadLog4jConfigurationFile(String) Reloads the log4J configuration file, using the log4J configuration

file located at the path passed as parameter

serverStop(boolean) Stops UCA for EBC Server. The parameter is a boolean flag that
indicates whether to restart (true) UCA for EBC Server once it has

stopped or not (false).

serverStop() Stops UCA for EBC Server.

serverShow()
not.

UCA for EBC Troubleshooting 67

5.1.3.1.6 Monitoring UCA for EBC Value Pack Manager

The UCA for EBC Value Pack Manager is an internal UCA for EBC component. It manages all the Value Packs of the UCA
for EBC application.

The following screenshot shows the UCA for EBC Value Pack Manager component at the Java JMX Console:

Figure 12: Java JMX Console: UCA for EBC Value Pack Manager - Operations

The UCA for EBC Value Pack Manager can be monitored at the Java JMX console using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack Manager that are shown on the Java JMX console:

Table 29: Java JMX Console: UCA for EBC Value Pack Manager - Attributes

Attribute name Settable Description

ActiveValuePacks No The list of active value pack currently running on UCA
for EBC

AllValuePacks No The list of all value pack currently
running/degraded/stopped/not deployed on UCA for
EBC

DeploymentHistory No The complete history of deployments of value packs on
UCA for EBC

The following table lists the operations that can be executed on the UCA for EBC Value Pack Manager using the Java
JMX console:

Table 30: Java JMX Console: UCA for EBC Value Pack Manager - Operations

Operation name Explanation

display() Lists all Value Packs and scenarios currently running on UCA for
EBC

startValuePack(String) Starts a Value Pack identified by the path of the Value Pack in the
${UCA_EBC_INSTANCE}/deploy folder passed as parameter.

UCA for EBC Troubleshooting 68

Value Pack Name>-<Value Pack Version

Parameter 1: path of the Value Pack

startValuePack(String, String) Starts a Value Pack identified by its name and version passed as
parameters.

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

undeployValuePack(String, String) Undeploys a Value Pack identified by its name and version passed
as parameters

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

stopValuePack(String, String) Stops a Value Pack identified by its name and version passed as
parameters

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

dumpScenarioSession(String, String, String) Dumps the Drools Working Memory of a scenario of a value pack

identified by the value pack name, version, and the scenario name

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

Parameter 3: Scenario Name

If parameter 3 is omitted, then the Drools Working Memory of all the
scenarios of the Value Pack specified in parameters 1, and 2 is

dumped.

If parameter 1, 2, and 3 are omitted, then the Drools Working
Memory of all the scenarios of all the value packs is dumped.

reloadScenarioSession(String, String, String,

String)

Reloads a specific rule file of a scenario of a value pack identified by

the value pack name, version, the scenario name, and the rule file
name

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

Parameter 3: Scenario Name

Parameter 4: Rule File Name

If Parameter 4 is omitted, then all rules files of the scenario of the
Value Pack specified in parameters 1, 2, and 3 are reloaded.

UCA for EBC Troubleshooting 69

If parameter 3 and 4 are omitted, then all rules files of all the
scenarios of the Value Pack specified in parameters 1, and 2 are
reloaded.

If parameter 1, 2, 3 and 4 are omitted, then all rules files of all the
scenarios of all the value packs are reloaded.

retractScenarioSession(String, String, String) Clears the Drools Working Memory of a scenario of a value pack
identified by the value pack name, version, and the scenario name

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

Parameter 3: Scenario Name

If parameter 3 is omitted, then the Drools Working Memory of all the
scenarios of the Value Pack specified in parameters 1, and 2 is

cleared.

If parameter 1, 2, and 3 are omitted, then the Drools Working

Memory of all the scenarios of all the value packs is cleared.

setEngineLogging(String, String, String,
Boolean)

Enables/Disables scenario specific Drools engine logging for a Value
Pack scenario specified by the Value Pack name, version, and

scenario name. The 4th parameter is a Boolean value: true for
enabling, false for disabling scenario specific Drools engine logging.

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

Parameter 3: Scenario Name

Parameter 4: A Flag indicating whether to enable/disable engine

logging (true/false)

If parameter 3 is omitted, then the engine logging of all the

scenarios of the Value Pack specified in parameters 1, and 2 is
enabled or disabled depending on the value of parameter 4.

If parameter 1, 2, and 3 are omitted, then the engine logging of all
the scenarios of all the value packs is enabled or disabled
depending on the value of parameter 4.

reloadConfigurationFile(String, String, String,
String)

Reloads a configuration file for a Value Pack scenario specified by
the Value Pack name, version, and scenario name. The 4th parameter
is the name of the configuration file to reload.

Parameter 1: Value Pack Name

Parameter 2: Value Pack Version

Parameter 3: Scenario Name

Parameter 4: Configuration file name

UCA for EBC Troubleshooting 70

If parameter 4 is omitted, all configuration files of the scenario are
reloaded.

If parameters 3 and 4 are omitted, all configuration files of all
scenarios of the value pack are reloaded.

If parameters 1, 2, 3 and 4 are omitted, all configuration files of all
scenarios of all value packs are reloaded.

5.1.3.2 Monitoring UCA for EBC value packs

Each UCA for EBC Value Pack running has its own sub-
Each Value Pack sub-folder is named after the Value Pack name and version.

In the Java Console, each Value Pack folder contains the following sub-folders:

 Class Loader: this sub-folder is displayed only if the uca.ebc.classloader property in the

${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file has been set to

ucaclassloader (this is not the case by default) and contains information about the UCA for EBC

class loader specific to the Value Pack

 DB flows: this sub-folder contains information about the DB flows specific to the Value Pack
 Mediation flows: this sub-folder contains information about the mediation flows specific to the Value

Pack
 Scenarios: this sub-folder contains information on each of the scenarios of the value pack (the contents

of this sub-folder is explained in the next section: 5.1.3.3 Monitoring UCA for EBC scenarios
 Value Pack: this sub-folder contains information on the value pack itself

The following screenshot shows a sample UCA for EBC Value Pack sub-folder at the Java JMX Console:

UCA for EBC Troubleshooting 71

Figure 13: Java JMX Console: a UCA for EBC Value Pack

The following sections will provide more detail on the Class Loader, DB Flows, Mediation flows, Scenarios and Value Pack
sub-folders of any UCA for EBC Value Pack at the Java JMX console.

5.1.3.2.1 Class Loader

This sub-folder is displayed only if the uca.ebc.classloader property in the

${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file has been set to ucaclassloader (this is

not the case by default).

The UCA for EBC Value Pack Class Loader represents the UCA EBC class loader for a specific UCA for EBC Value Pack.

The following screenshot shows the attributes available for a UCA for EBC Value Pack Class Loader component at the
Java JMX Console:

Figure 14: Java JMX Console: UCA for EBC Value Pack - Class Loader - Attributes

Any UCA for EBC Value Pack Class Loader can be monitored at the Java JMX console using both attributes and
operations.

The following table lists the attributes of the UCA for EBC Value Pack Class Loader that are shown on the Java JMX
console:

Table 31: Java JMX Console: UCA for EBC Value Pack - Class Loader - Attributes

Attribute name Settable Description

UCA for EBC Troubleshooting 72

ListClasses No The list of Java Classes loaded by the Value Pack Class
Loader

ListErrorClasses No The list of Java Classes that could not be loaded by the
Value Pack Class Loader

ListErrorResources No The list of Java Resources that could not be loaded by
the Value Pack Class Loader

ListFullPackages No The full list of Java Packages loaded by the Value Pack

Class Loader

ListJarFiles No The list of JAR files loaded by the Value Pack Class
Loader

ListValuePackPackages No The list of Value Pack Java Packages loaded by the
Value Pack Class Loader

TotalErrorClasses No The total number of Java Classes that could not be
loaded by the Value Pack Class Loader

TotalLoadedClasses No The total number of Java Classes loaded by the Value
Pack Class Loader

TotalLoadedPackages No The total number of Java Packages loaded by the
Value Pack Class Loader

The following screenshot shows the operations available for a UCA for EBC Value Pack Class Loader component at the
Java JMX Console:

Figure 15: Java JMX Console: UCA for EBC Value Pack - Class Loader - Operations

The following table lists the operations that can be executed on the UCA for EBC Value Pack Class Loader using the Java
JMX console:

Table 32: Java JMX Console: UCA for EBC Value Pack - Class Loader - Operations

Operation name Explanation

UCA for EBC Troubleshooting 73

dumpResources() Dumps the list of all the Resources loaded by the Value Pack Class
Loader

dumpClasses() Dumps the list of all the Java Classes loaded by the Value Pack
Class Loader

dumpFullClass(String) Dumps a Java Class loaded by the Value Pack Class Loader. The
Java Class is identified by the name of the class passed as a
parameter.

Parameter 1: Full Class Name

getClassInfo(String) Returns information on a Java Class loaded by the Value Pack Class
Loader. The Java Class is identified by the name of the class passed
as a parameter.

Parameter 1: Full Class Name

getClassInfoAllHierarchy(String) Returns information on a Java Class loaded by the Value Pack Class
Loader or by the Main Class Loader. The Java Class is identified by
the name of the class passed as a parameter.

Parameter 1: Full Class Name

getResourceInfo(String) Returns information on a Resource loaded by the Value Pack Class
Loader. The Resource is identified by the name passed as a
parameter.

Parameter 1: Resource Name

getResourceInfoAllHierarchy(String) Returns information on a Resource loaded by the Value Pack Class
Loader or Main Class Loader. The Resource is identified by the
name passed as a parameter.

Parameter 1: Resource Name

5.1.3.2.2 DB Flows

The UCA for EBC Value Pack DB Flows represent the DB flows for a specific UCA for EBC Value Pack.

The following screenshot shows the attributes available for a UCA for EBC Value Pack Mediation Flows component at the

Java JMX Console:

UCA for EBC Troubleshooting 74

Figure 16: Java JMX Console: UCA for EBC Value Pack DB Flows - Attributes

Any UCA for EBC Value Pack DB Flow can be monitored at the Java JMX console using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack DB Flows that are shown on the Java JMX console:

Table 33: Java JMX Console: UCA for EBC Value Pack DB Flows - Attributes

Attribute name Settable Description

FlowStatus No The status of the DB Flow

FlowStatusHistory No A history of the status of the Mediation DB over time

FlowType No Either dynamic or static

Name No The name of the DB Flow

SourceIdentifier No The source identifier of the DB Flow

SynchronizationStatus No Either synchronized or synchronizing

SynchronizationStatusHistory No A history of the synchronization status of the DB Flow
over time

The following screenshot shows the operations available for a UCA for EBC Value Pack Class Loader component at the
Java JMX Console:

UCA for EBC Troubleshooting 75

Figure 17: Java JMX Console: UCA for EBC Value Pack DB Flows - Operations

The following table lists the operations that can be executed on the UCA for EBC Value Pack DB Flows using the Java

JMX console:

Table 34: Java JMX Console: UCA for EBC Value Pack DB Flows - Operations

Operation name Explanation

start() Start the DB Flow

stop() Stop the DB Flow

status() Displays the status of the DB Flow

resynchronize() Resynchronizes the DB Flow

5.1.3.2.3 Mediation Flows

The UCA for EBC Value Pack Mediation Flows represent the mediation flows for a specific UCA for EBC Value Pack.

The following screenshot shows the attributes available for a UCA for EBC Value Pack Mediation Flow component at the
Java JMX Console:

UCA for EBC Troubleshooting 76

Figure 18: Java JMX Console: UCA for EBC Value Pack Mediation Flows - Attributes

Any UCA for EBC Value Pack Mediation Flow can be monitored at the Java JMX console using both attributes and
operations.

The following table lists the attributes of the UCA for EBC Value Pack Mediation Flows that are shown on the Java JMX
console:

Table 35: Java JMX Console: UCA for EBC Value Pack Mediation Flows - Attributes

Attribute name Settable Description

ActionReference No The Action Reference (from the ActionRegistry.xml

configuration file) associated with the Mediation Flow

FailedActions No The number of Failed actions associated with the
Mediation Flow (Each action is either a CreateFlow,
DeleteFlow, ResynchronizeFlow, or a StatusFlow action)

FlowStatus No The status of the Mediation Flow

FlowStatusHistory No A history of the status of the Mediation Flow over time

FlowType No Either dynamic or static

Name No The name of the Mediation Flow

SynchronizationStatus No Either synchronized or synchronizing

SynchronizationStatusHistory No A history of the synchronization status of the Mediation
Flow over time

The following screenshot shows the operations available for a UCA for EBC Value Pack Mediation Flow component at the
Java JMX Console:

UCA for EBC Troubleshooting 77

Figure 19: Java JMX Console: UCA for EBC Value Pack Mediation Flows - Operations

The following table lists the operations that can be executed on the UCA for EBC Value Pack Mediation Flows using the
Java JMX console:

Table 36: Java JMX Console: UCA for EBC Value Pack Mediation Flows - Operations

Operation name Explanation

start() Start the Mediation Flow

stop() Stop the Mediation Flow

status() Displays the status of the Mediation Flow

resynchronize() Resynchronizes the Mediation Flow

displayMediationFlowXML() Displays the XML definition of the Mediation Flow (extracted from
the ValuePackConfiguration.xml file)

displayLastActionStatus() Displays the output of the last action performed on the Mediation
Flow (either a CreateFlow, DeleteFlow, ResynchronizeFlow, or a
StatusFlow action)

displayLastCreateFlowActionStatus() Displays the output of the last CreateFlow action performed on the
Mediation Flow

displayLastDeleteFlowActionStatus() Displays the output of the last DeleteFlow action performed on the

Mediation Flow

displayLastStatusFlowActionStatus() Displays the output of the last StatusFlow action performed on the
Mediation Flow

displayLastResynchFlowActionStatus() Displays the output of the last ResynchronizeFlow action performed
on the Mediation Flow

UCA for EBC Troubleshooting 78

5.1.3.2.4 Scenarios

All the scenarios of a value pack are listed under the Scenarios sub-folder of the value pack folder, like in the screenshot
below:

Figure 20: Java JMX Console: UCA for EBC Value Pack Scenarios

Each scenario sub-folder is named after the scenario. Please see chapter 5.1.3.3 Monitoring UCA for EBC scenarios for
detailed information on the contents of each scenario sub-folder.

5.1.3.2.5 Value Pack

The Value Pack sub-folder of a UCA for EBC Value Pack presents the attributes and operations for a specific UCA for EBC
Value Pack.

The following screenshot shows the attributes available for a Value Pack sub-folder of a UCA for EBC Value Pack at the
Java JMX Console:

UCA for EBC Troubleshooting 79

Figure 21: Java JMX Console: UCA for EBC Value Pack Value Pack - Attributes

Any UCA for EBC Value Pack can be monitored at the Java JMX console using both attributes and operations.

The following table lists the attributes of the UCA for EBC Value Pack that are shown on the Java JMX console:

Table 37: Java JMX Console: UCA for EBC Value Pack Value Pack - Attributes

Attribute name Settable Description

DateLastReceivedEvent No The date and time of the last event received by the
Value Pack

FlowPercentage No Percentage of events received by the Value Pack
compared to the total of events received by the UCA
for EBC Dispatcher

FlowStatus No The status of the Mediation Flow for the Value Pack,
either:

 Unknown
 Disabled

 Inactive

 Failover
 Failed
 Active
 Starting
 Stopping

ReceivedEventsSinceStartup No The number of events received by the Value Pack since

start-up

UCA for EBC Troubleshooting 80

ScenarioStatus No The status of the Scenarios for the Value Pack, either:

 Starting

 Running

 Degraded
 Failed
 Stopped
 Unknown

ScenariosName No The list of scenario names associated with the Value
Pack

Status No The status of the Value Pack, either:

 Starting

 Running
 Degraded
 Failed
 Stopping
 Stopped

 NotDeployed
 Unknown

StatusExplanation No A detailed explanation of the status of the Value Pack

StatusHistory No The full history of the Value Pack statuses, since it was
first started

SynchronizationStatus No The synchronization status of the Value Pack, either:

 Synchronizing

 Synchronized

The following screenshot shows the operations available for a Value Pack sub-folder of a UCA for EBC Value Pack at the
Java JMX Console:

UCA for EBC Troubleshooting 81

Figure 22: Java JMX Console: UCA for EBC Value Pack Value Pack - Operations

The following table lists the operations that can be executed on the UCA for EBC Value Pack using the Java JMX console:

Table 38: Java JMX Console: UCA for EBC Value Pack Value Pack - Operations

Operation name Explanation

resetStatistics() Resets the statistics for the Value Pack

retractAllScenarios() Clears the Drools Working Memory of all the scenarios of the Value
Pack

dumpSessionOfAllScenarios() Dumps the Drools Working Memory of all the scenarios of the Value
Pack

reloadAllScenarios() Reloads all rules files of all the scenarios of the Value Pack

createAllMediationFlows() Creates all the mediation flows associated with the Value Pack

deleteAllMediationFlows() Deletes all the mediation flows associated with the Value Pack

resynchAllMediationFlows() Resynchronizes all the mediation flows associated with the Value
Pack

statusAllMediationFlows() Retrieves the status of all the mediation flows associated with the
Value Pack

5.1.3.3 Monitoring UCA for EBC scenarios

Each scenario of a running UCA for EBC Value Pack has its own sub-folder at the Java JMX Console, under the
- -folder is named after the

Scenario.

UCA for EBC Troubleshooting 82

The following screenshot shows the attributes available for a Scenario sub-folder of a UCA for EBC Value Pack at the Java
JMX Console:

Figure 23: Java JMX Console: UCA for EBC Value Pack Scenario - Attributes

Any Scenario of a UCA for EBC Value Pack can be monitored at the Java JMX console using both attributes and
operations.

The following table lists the attributes of any Scenario of a UCA for EBC Value Pack that are shown on the Java JMX
console:

Table 39: Java JMX Console: UCA for EBC Value Pack Scenario - Attributes

Attribute name Settable Description

Actions_Failed No The number of failed actions for the scenario

Compression_AVC_Compressed No The number of AVC (Attribute Value Change) events
compressed by the Compression thread

Compression_AVC_EfficiencyPercentage No The efficiency percentage of the Compression Thread
regarding AVC (Attribute Value Change) events

Compression_AVC_Received No The number of AVC (Attribute Value Change) events
received

Compression_SC_Compressed No The number of SC (State Change) events compressed
by the Compression thread

Compression_SC_EfficiencyPercentage No The efficiency percentage of the Compression Thread
regarding SC (State Change) events

Compression_SC_Received No The number of SC (State Change) events received

Filter_DateLastRejectedEvent No The Date and Time of the last event that was rejected
by the scenario filter

UCA for EBC Troubleshooting 83

Filter_NumberOfPassedEventsSinceStartup No The number of events that passed the scenario filters
since start-up

Filter_NumberOfRejectedEventsSinceStartu
p

No The number of events rejected by the scenario filters
since start-up

FlowPercentage No Percentage of events inserted into Working Memory
compared to the total of events received by the
Scenario

LogRules Yes Flag (true/false) indicating whether scenario specific
Drools engine logging is enabled/disable for the
scenario

Queue_CurrentSize No The current size (in number of events) of the scenario
events queue

Queue_DateLastHighWaterMark No The date and time of the last high water mark of the

Scenario events queue

Queue_DateLastPublish No Date and time of the last time an event was added to
the Scenario events queue

Queue_DateLastSubscribe No Date and time of the last time an event was removed
from the Scenario events queue to be processed

Queue_DateLastZeroed No The date and time of the last time the Scenario events
queue was empty

Queue_HighWaterMark No The value of the high water mark of the Scenario
events queue (in number of events)

Queue_HighWaterMarkStillIncreasing No Whether the high water mark of the Scenario events
queue is still increasing or not

Queue_NumberZeroedSinceLastHighWater

Mark

No The number of times that the Scenario events queue

was empty since the last high water mark

Queue_SizeHistory No The history of the Scenario events queue size

Queue_TotalObjects No

the Scenario events queue since start-up

Queue_TotalObjectsSinceLastHighWaterMa
rk

No
the Scenario events queue since the last high water

mark

Status No The status of the Scenario, either:

 Starting

 Running

 Degraded
 Failed
 Stopped
 Unknown

StatusExplanation No An explanation for the status of the Scenario

StatusHistory No The full history of the Scenario statuses, since it was

first started

WM_CurrentNumberOfFact No The current number of facts in the Drools Working

Memory of the Scenario

WM_DateLastInjectedFact No Date and time of the last fact inserted into the Drools

Working Memory of the Scenario

WM_DateLastRemovedFact No Date and time of the last fact removed from the Drools

Working Memory of the Scenario

UCA for EBC Troubleshooting 84

WM_DateLastUpdatedFact No Date and time of the last fact updated in the Drools

Working Memory of the Scenario

WM_InsertUpdateRetractRate No The rate of operations (insert/update/retract fact) on

the Drools Working Memory of the Scenario in

operations per second

WM_MaxNumberOfFactsSinceStartup No The maximum number of facts in the Drools Working

Memory of the Scenario since start-up

WM_MediationSynchronizationFlag No The value of the Mediation Synchronization Flag:

True (i.e. the mediation flow is synchronized)

False (i.e. the mediation flow is currently undergoing a

synchronization)

WM_MediationSynchronizationHistory No The history of the synchronization status of the

mediation flow

WM_NumberOfFactsSinceStartup No The number of facts that have been inserted into the

Drools Working Memory of the Scenario since start-up

WM_NumberOfRemovedFactsSinceStartup No The number of facts that have been removed from the

Drools Working Memory of the Scenario since start-up

WM_NumberOfUpdatedFactsSinceStartup No The number of facts that have been updated in the

Drools Working Memory of the Scenario since start-up

The following screenshot shows the operations available for a Scenario sub-folder of a UCA for EBC Value Pack at the
Java JMX Console:

UCA for EBC Troubleshooting 85

Figure 24: Java JMX Console: UCA for EBC Value Pack Scenario - Operations

The following table lists the operations that can be executed on any Scenario of a UCA for EBC Value Pack using the Java
JMX console:

Table 40: Java JMX Console: UCA for EBC Value Pack Scenario - Operations

Operation name Explanation

resetCounters() Resets the statistics for the Scenario

reloadRulesFile(String) Reload a specific Rules File of the Scenario

Parameter 1: The name of the Rules File

retractAll() Clears the Drools Working Memory of the Scenario

resetStatus() Resets the status of the Scenario

dumpFailedActions() Dump all failed actions for the Scenario

retractFailedActions() Retracts all failed actions from the Drools Working Memory of the
Scenario

reloadScenario() Reloads all rules files of the Scenario

dumpSession() Dumps the Drools Working Memory of the Scenario

clearCompressionStats() Resets the statistics regarding Compression

UCA for EBC Advanced Troubleshooting 86

Chapter 6

UCA for EBC Advanced Troubleshooting

6.1 UCA for EBC Logging Mechanism

The UCA for EBC logging feature is based on the log4j technology.

The main application logging mechanism is driven by the setting of the ${UCA_EBC_INSTANCE}/conf/uca-

ebc-log4j.xml log4j configuration file.

Some other (specific) logging levels can be activated by setting some properties in the

${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file. These additional logging levels are:

 Scenario rule execution log:

That allows logging scenarios rules execution in a dedicated file in order to help debugging.

 Collector log:

That allows logging all alarms collected in a specific file.

The generated log files are located in the ${UCA_EBC_INSTANCE}/logs directory.

NOTE: Changes to the ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file require a restart of

UCA for EBC Server in order for the changes to be taken into account.

Changes to the ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml file require either a reload of the

Log4J configuration (through the uca-ebc-admin command-line tool, or the UCA for EBC User Interface) or a restart
of UCA for EBC Server in order for the changes to be taken into account.

6.1.1 Standard application logging

Application logging is controlled by the ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml log4j

configuration file.

The CONSOLE, FILE, and DB appenders are used for controlling application logging to the console, standard application

log file or UCA for EBC User Interface. The standard application log file is the following (by default):

${UCA_EBC_INSTANCE}/logs/uca-ebc.log.

The ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml can be modified to control:

 what kind of events get logged

 what is the trace level for each event type (event type are defined by Java package names)

 where the events are logged (what appenders are used)

The provided ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml file predefines a set of application

classes for which the logging can be activated or not.

6.1.2 Collector logging

With UCA for EBC 3.4, events and alarms can still be collected through the OSS Open Mediation UCA for EBC Channel

adapter, as in previous releases; but they can also be collected through the UCA for EBC UMB Adapter.

UCA for EBC Advanced Troubleshooting 87

In both cases, UCA for EBC offers the possibility to log the collected alarms or events into a file exactly how they were
received.

6.1.2.1 Events received through the OSS Open Mediation UCA for EBC Channel

Adapter

The Collector raw logging feature is the possibility to log in a file the exact alarm list that is received by the collector
through the UCA for EBC Channel Adapter

This logging feature can be enabled/disabled at application start-up by setting the collector.logger.enabled property to

true or false in the ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file.

By setting this property to true all alarms going through the Collector will be dumped in either one of the following files

before any other treatment if done on the received alarms:

 the ${UCA_EBC_INSTANCE}/logs/uca-ebc-collector.log file for alarms that are not rejected by

the Collector

 the ${UCA_EBC_INSTANCE}/logs/uca-ebc-collector-rejected.log file for alarms that are

rejected by the Collector

Alarms can be rejected by the Collector for either one of the following reasons:

 The JMS message containing the alarms does not have the proper body format: the expected JMS message
body format expected by the Collector is Text

 The content of the JMS message cannot be converted to Alarm objects because the XML format of the alarms
inside the JMS message is not compliant with the UCA for EBC Alarm format defined in the

${UCA_EBC_HOME}/schemas/uca-expert-alarm.xsd file

 Collector message validation is turned on (the collector.messages.validation property is set to

true in the ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file), and the alarms in the

JMS message received by the Collector failed validation

Alarms are dumped directly in XML format in the uca-ebc-collector.log file. On the other hand, the uca-

ebc-collector-rejected.log file has the format of a log file.

6.1.2.2 Events received through the UMB UCA Mediation Adapter

Events (including alarms), received by UCA for EBC through the UCA for EBC UMB Adapter will be logged in the
following format:

This logging feature can be enabled/disabled at application start-up by setting the received.events.logger.enabled

property to true or false in the ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file.

UCA for EBC Advanced Troubleshooting 88

By setting this property to true all events going through the UCA for EBC UMB Adapter will be dumped in the following

file before any other treatment is done on the received alarms:

${UCA_EBC_INSTANCE}/logs/uca-ebc-received-events.log

6.1.3 Scenario logging

6.1.3.1 Scenario logging

In order to be able to configure how log messages coming from the Scenario rule files (drl files) are processed (what trace

level and appenders are used), a specific logger must be added to the ${UCA_EBC_INSTANCE}/conf/uca-

ebc-log4j.xml configuration file.

This logger is defined as follows:

<logger name="<scenario name>" additivity="false">

 <level value="INFO" />

 <appender-ref ref="CONSOLE" />

 <appender-ref ref="DB" />

 </logger>

Where <scenario name> is the name of the scenario for which you want to configure the logging. The

<scenario name> has to be identical to the <scenario name> defined in the

ValuePackConfiguration.xml file of your Value Pack.

The definition of your scenario Detailed Traces for Value Pack

the ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml file. This section is identified by comments in the

file.

The following screenshot shows an example of how to configure specific logging in the uca-ebc-log4j.xml file:

Figure 25: Configuring scenario specific logging in the uca-ebc-log4j.xml file

UCA for EBC Advanced Troubleshooting 89

6.1.3.2 Scenario exceptions logging

It is also possible to define a specific logger (one for each scenario) in the ${UCA_EBC_INSTANCE}/conf/uca-

ebc-log4j.xml configuration file for logging the exceptions thrown in the action part of the rules of a scenario.

By default, these exceptions are logged using the scenario logger as defined in the previous chapter: 6.1.3 Scenario

logging

If you want exceptions log messages to be handled by a specific logger different from the scenario logger, you can define

it in the uca-ebc-log4j.xml configuration file. The logger should be named myScenario.exceptions

(change myScenario to the actual name of your scenario as per the ValuePackConfiguration.xml file).

The following screenshot shows an example of how to configure a specific scenario exception logger in the uca-ebc-

log4j.xml file:

Figure 26: Configuring scenario exceptions specific logging in the uca-ebc-log4j.xml file

In versions of UCA for EBC prior to UCA for EBC 3.4, these scenario exceptions were logged using either

com.hp.uca.expert.scenario.internal.ScenarioImpl" or

"com.hp.uca.expert.watchdog.WatchdogThread" loggers depending on whether the Scenario Thread

or Watchdog Thread was executing the rules when the exception occurred.

With to UCA for EBC 3.4 onward, these scenario exceptions myScenario.exceptions

uca-ebc-log4j.xml file delivered with UCA for EBC 3.4 that can be

myScenario.exceptions

NOTICE:
Please refer to section -ebc- to learn more about the configuration of the

${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml file.

6.1.3.3 Scenario rule execution logging

Rule execution can be logged per scenario in a dedicated log file. Logging can be enabled/disabled at application start-up

by setting the engine.logger.enabled property to true/false in the ${UCA_EBC_INSTANCE}/conf/uca-

ebc.properties file.

This property controls scenario specific rule execution logging for all scenarios.

Properties like engine.logger.interval (which controls the interval in milliseconds at which rule execution information is
written to the log file) can also be set. These properties affect all scenario specific rule execution log files.

UCA for EBC Advanced Troubleshooting 90

NOTICE:
Please refer to section uca-ebc.properties file configuration especially Table 16
properties in the uca- for more information on how to configure the

${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file.

Changes to the ${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file require a restart of

UCA for EBC Server in order for the changes to be taken into account.

Scenario-specific rule execution log files are named logEngine_<scenario name>.log and are located in the

${UCA_EBC_INSTANCE}/logs directory. Scenario-specific engine log files contain standard Drools engine log

entries specific to a scenario.

At runtime, it is also possible to enable/disable scenario specific rule execution logging for just one scenario by using

either the uca-ebc-admin command-line tool or the Java console.

Below is a screenshot showing how to enable/disable scenario specific rule execution logging for just one scenario by
using the Java console:

Figure 27: Java JMX Console: Enabling/Disabling scenario specific rule execution logging for one scenario

Scenario specific rule execution log files are compatible with the JBoss Rule Audit feature in Eclipse IDE.

The JBoss Rule Audit panel comes with the JBoss Drools Eclipse plugin. You can view this panel by selecting the JBoss
Drools perspective in Eclipse IDE as shown below. The JBoss Rule Audit panel should be part of the JBoss Drools

perspective unless it has been removed.

UCA for EBC Advanced Troubleshooting 91

Figure 28: Selecting the JBoss Drools perspective in Eclipse IDE by clicking on the JBoss Drools perspective icon

-

UCA for EBC Advanced Troubleshooting 92

Figure 29: Selecting the JBoss Drools perspective in Eclipse IDE by using the Eclipse IDE menus

-

Figure 30: Showing the JBoss Drools Audit view in Eclipse IDE

To display the contents of a scenario specific rule execution log file using Eclipse IDE, you need to load the file inside the
Audit panel.

You can open a logEngine_<scenario name>.log file in the Audit panel by using drap and drop of the file

into the Audit panel as shown in the screenshot below.

UCA for EBC Advanced Troubleshooting 93

Figure 31: Eclipse IDE: Using drag and drop to open a Drools engine log file in the Drools Audit panel

Alternati
Drools Audit panel as show below:

Figure 32 n the Drools Audit panel

The following screenshot shows an example of how contents of a scenario specific rule execution log file is displayed in
the Audit panel of the Drools perspective in Eclipse IDE:

Figure 33: Eclipse IDE: Viewing scenario rule execution logs

Scenario specific rule execution log files contain Drools rule activation information in addition to the
insertion/update/deletion of objects in Drools working memory.

Besides the Audit panel, the Drools perspective in Eclipse IDE also provides the Agenda and Working Memory panels
which give information on the planned rule execution schedule (Agenda panel) and the list of all the objects in the
Working Memory (Working Memory panel) of a Drools Engine.

You can select the Agenda or Working Memory panels by either switching to the Drools perspective or going to the
-

group, as shown below.

UCA for EBC Advanced Troubleshooting 94

Figure 34: Showing the JBoss Drools Agenda or Working Memory view in Eclipse IDE

The Drools Agenda and Working Memory views are useful in debug mode in Eclipse, for example, when running the JUnit

tests of a Value Pack in debug mode in Eclipse. You put breakpoints in either the rules or java code of a Value Pack (by
double-clicking left of the line number of a line of rules or java code) then execute the JUnit tests of a Value Pack in

debug mode by right- -
as shown below

Figure 35: Running a JUnit Test of a Value Pack in debug mode in Eclipse IDE

The execution will pause once the first breakpoint is encountered. Once the execution is paused you can inspect the
contents of the Drools Working Memory by looking at the Working Memory panel, as shown below:

UCA for EBC Advanced Troubleshooting 95

Figure 36: Sample view of the Drools Working Memory panel in Eclipse IDE

The Drools Working Memory panel gives information on the list of all the objects in Working Memory: Alarms, Flags,

You can also inspect the Drools Agenda by looking at the Agenda panel, as show below:

Figure 37: Sample view of the Drools Agenda panel in Eclipse IDE

The Drools Agenda panel gives information on the planned rule execution schedule.

NOTICE: The Drools perspective in Eclipse IDE is provided by Drools plug-in for Eclipse. For more information

on how to install the Drools plug-in for Eclipse IDE please refer to: [R2] HPE UCA for EBC Value Pack
Development Guide

6.1.4 Drools logging

6.1.4.1 Configuring the log for Working Memory Agenda and Event Listeners

In the ${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml Log4J configuration file for UCA for EBC, you

can configure the log level and appender references for two classes that monitor Drools Engine Agenda and Drools

Working Memory for all the scenarios of all the Value Packs running on UCA for EBC.

You can configure the log for these two classes by updating the following section in the

${UCA_EBC_INSTANCE}/conf/uca-ebc-log4j.xml Log4J configuration file:

UCA for EBC Advanced Troubleshooting 96

Figure 38: Configuring the log for Working Memory Agenda and Event Listeners

Setting the log level to DEBUG for the WMAgendaEventListener will add log messages to the log(s) every time the
Agenda of the Drools Engine of a Scenario is updated, i.e. when:

 Rule activations are created

 Rule activations are canceled

 Before rules are fired

 After rules are fired

Setting the log level to DEBUG for the WMEventListener will add log messages to the log(s) every time the Working
Memory of the Drools Engine of a Scenario is updated, i.e. when:

 Objects are inserted into Working Memory

 Objects are updated in Working Memory

 Objects are retracted from Working Memory

NOTICE: Enabling these logs can be complementary to using the scenario specific Drools engine logs that are
described in section: 6.1.2 Collector logging

6.2 Managing the Drools engine(s)

Each scenario has its own Drools rule engine for processing the Drools rules defined in the rules files of the scenario. The
following operations can be performed on the working memory of a scenario, without having to restart either UCA for

EBC or any Value Pack:

 Dumping the Working Memory

 Clearing the Working Memory

 Reloading the Rules

6.2.1 Dumping the Working Memory

Dumping the Working Memory of a scenario dumps the complete list of object (Facts) currently in the working memory of
a Scenario to the log(s).

UCA for EBC Advanced Troubleshooting 97

Dumping the Working Memory of a scenario can be performed using the Java JMX Console at the Scenario level by going

uca_ebc/<value pack name>-<value

pack version>/scenarios/<scenario name>/operations

The following screenshot shows how to dump the working memory at the scenario level:

Figure 39: Java JMX Console: Dumping the working memory of a Scenario

Dumping the Working Memory of a scenario can also be performed at the UCA for EBC User Interface in the Scenario /
Monitoring panel, as shown in the following screenshot:

Figure 40: UCA for EBC User Interface: Dumping the working memory of a scenario

UCA for EBC Advanced Troubleshooting 98

NOTICE:

For more information on the UCA for EBC User Interface, please refer to: [R3] HPE UCA for EBC User

Interface Guide.
For more information on how to dump the working memory of a scenario using the Java JMX Console, please
see the section: 5.1.3.3 Monitoring UCA for EBC scenarios

6.2.2 Clearing the Working Memory

Clearing the Working Memory of a scenario can be necessary at times when you want to start fresh with your scenario.

This operation may or may not be followed by a resynchronization of the mediation flow of the Value Pack that the
scenario belongs to, in case you need you scenario to receive the current list of events (Alarms) from the mediation layer
or not.

Cleaning the Working Memory of a scenario can be performed using the Java JMX Console at the Scenario level by going

uca_ebc/<value pack name>-<value

pack version>/scenarios/<scenario name>/operations

The following screenshot shows how to clear the working memory at the scenario level:

Figure 41: Java JMX Console: Clearing the working memory of a Scenario

Cleaning the Working Memory of a scenario can also be performed at the UCA for EBC User Interface in the Scenario /

Monitoring panel, as shown in the following screenshot:

UCA for EBC Advanced Troubleshooting 99

Figure 42: UCA for EBC User Interface: Clearing the working memory of a scenario

NOTICE:

For more information on the UCA for EBC User Interface, please refer to: [R3] HPE UCA for EBC User

Interface Guide.

For more information on how to clear the working memory of a scenario using the Java JMX Console, please
see the section: 5.1.3.3 Monitoring UCA for EBC scenarios

6.2.3 Reloading the rules

Each scenario of a Value Pack contains a list of Drools rules files or Drools template rules files (template rules file are
similar to standard rules file but use an extra parameters file).

Each and all of the rules files (and template rules files) can be modified at runtime and reloaded without restarting UCA

for EBC or any individual Value Pack so that the new rules files get used right away in the Drools engine of the scenario.

The process for reloading the rules files is the following:

 Update the rules files, template rules files, and template parameters files as you wish in the deployment directory

of the Value Pack: ${UCA_EBC_INSTANCE}/deploy/<value pack name>-<value pack
version>

 Reload the rules of a scenario using either the uca-ebc-admin command-line tool (with the -r or --reload option),
the Java JMX Console or UCA for EBC User Interface

Reloading the rules of a scenario can be performed using the Java JMX Console at the Scenario level by going to the

uca_ebc/<value pack name>-<value pack

version>/scenarios/<scenario name>/operations

The following screenshot shows how to reload rules files at the scenario level:

UCA for EBC Advanced Troubleshooting 100

Figure 43: Java JMX Console: Reloading the rules of a Scenario

The same operation can be performed for all the rules files of all scenarios of one Value Pack, as shown in the following
screenshot:

Figure 44: Java JMX Console: Reloading the rules of all Scenarios of a Value Pack

Reloading the rules of a scenario can also be performed at the UCA for EBC User Interface in the Scenario / Monitoring
panel, as shown in the following screenshot:

UCA for EBC Advanced Troubleshooting 101

Figure 45: UCA for EBC User Interface: Reloading the rules of a Scenario

NOTICE:

For more information on the UCA for EBC User Interface, please refer to: [R3] HPE UCA for EBC User

Interface Guide.

For more information on how to reload the rules of a scenario using the Java JMX Console, please see the
section: 5.1.3.3 Monitoring UCA for EBC scenarios

For more information on how to reload the rules of a scenario using the uca-ebc-admin command-line tool,
please see the section -ebc- .

6.3 Managing the flows and actions

6.3.1 Managing the DB flows

Each Value Pack can have one or more DB flows associated with it. Each DB flow represents a flow of events (Alarms)
coming from a DB and going into the Value Pack and its scenarios.

DB flows are defined at the Value Pack level. All Scenarios of a Value Pack share the same DB flows.

6.3.1.1 Managing individual DB flows

The following operations can be performed on individual DB flows, without having to restart neither UCA for EBC nor the

Value Pack (each operation only affects one DB flow):

 Start a DB flow (available in Java Console and UCA for EBC GUI)

 Stop a DB flow (available in Java Console and UCA for EBC GUI)

 Check the status of a DB flow (available in Java Console only)

 Resynchronize a DB flow (available in Java Console and UCA for EBC GUI)

The following screenshot shows how to perform these operations on individual DB flows using the Java console:

UCA for EBC Advanced Troubleshooting 102

Figure 46: Java JMX Console: Performing operations on a single DB flow

It is possible to start, stop, and resynchronize DB flows using the UCA for EBC User Interface as shown in the following
screenshot:

Figure 47: UCA for EBC User Interface: Performing operations on a single DB flow

UCA for EBC Advanced Troubleshooting 103

6.3.2 Managing the mediation flows

Each Value Pack can have one or more mediation flows associated with it. Each mediation flow represents a flow of
events (Alarms) coming from the mediation layer and going into the Value Pack and its scenarios.

Mediation flows are defined at the Value Pack level. All Scenarios of a Value Pack share the same mediation flows.

6.3.2.1 Managing the mediation flows at the value pack level

The following operations can be performed on the mediation flows of a Value Pack at the Value Pack level, without having

to restart neither UCA for EBC nor the Value Pack (each operation affects all the mediation flows of the Value Pack at
once):

 Create all the mediation flows (available in Java Console, and uca-ebc-admin tool)

 Delete all the mediation flows (available in Java Console, and uca-ebc-admin tool)

 Resynchronize all the mediation flows (available in Java Console, uca-ebc-admin tool and UCA for EBC GUI)

 Check the status of all the mediation flows (available in Java Console, and uca-ebc-admin tool)

The following screenshot shows how to perform these operation on the mediation flows at the value pack level using the

Java console:

Figure 48: Java JMX Console: Performing operations on mediation flows at the Value Pack level

Resynchronizing the mediation flows is the only operation that can be performed at the value pack level on the mediation
flows of a value pack using the UCA for EBC User Interface as shown in the following screenshot:

UCA for EBC Advanced Troubleshooting 104

Figure 49: UCA for EBC User Interface: Resynchronizing the mediation flows of a Value Pack

Resynchronizing the mediation flows of a Value Pack can be necessary at times when you want to start fresh with your

Value Pack and all its scenarios.

Mediation flows at defined at the Value Pack level in the ValuePackConfiguration.xml file of the Value Pack. Each Value
Pack has its own mediation flows. As a consequence, resynchronizing the mediation flows of a Value Pack only affects the

one Value Pack. All other Value Packs remain unaffected by the resynchronization.

When the mediation flows of a Value Pack are resynchronized, all the scenarios will receive the current list of events
(Alarms) coming from the mediation layer. Usually, a resynchronization of the mediation flows is preceded by an
operation to clear the Working Memory of all the scenarios of the Value Pack, so that:

 events (Alarms) are not duplicated in Working Memory, especially for scenarios that are in STREAM mode

 all scenarios can start fresh with both the complete current list of event from the mediation layer and an empty
Working Memory

NOTICE:

For more information on the UCA for EBC User Interface, please refer to: [R3] HPE UCA for EBC User

Interface Guide.
For more information on how to resynchronize the mediation flow for a value pack, please see the section 5.1.3.2

UCA for EBC .

6.3.2.2 Managing individual mediation flows

The following operations can be performed on individual mediation flows, without having to restart neither UCA for EBC

nor the Value Pack (each operation only affects one mediation flow):

 Start a mediation flow (available in Java Console, uca-ebc-admin tool and UCA for EBC GUI)

 Stop a mediation flow (available in Java Console, uca-ebc-admin tool and UCA for EBC GUI)

 Check the status of a mediation flow (available in Java Console, and uca-ebc-admin tool)

 Resynchronize a mediation flow (available in Java Console, uca-ebc-admin tool and UCA for EBC GUI)

 Display the configuration of the mediation flow (as XML text) (available only in Java Console)

UCA for EBC Advanced Troubleshooting 105

 Display the status/output of the last action (either CreateFlow, DeleteFlow, StatusFlow or ResynchronizeFlow)

performed on the mediation flow (available only in Java Console)

 Display the status/output of the last CreateFlow action performed on the mediation flow (available only in Java

Console)

 Display the status/output of the last DeleteFlow action performed on the mediation flow (available only in Java

Console)

 Display the status/output of the last StatusFlow action performed on the mediation flow (available only in Java

Console)

 Display the status/output of the last ResynchronizeFlow action performed on the mediation flow (available only
in Java Console)

The following screenshot shows how to perform these operations on individual mediation flows using the Java console:

Figure 50: Java JMX Console: Performing operations on a single mediation flow

It is possible to start, stop, resynchronize, as well as view the status of individual mediation flows using the UCA for EBC
User Interface as shown in the following screenshot:

UCA for EBC Advanced Troubleshooting 106

Figure 51: UCA for EBC User Interface: Performing operations on a single mediation flow

6.3.3 Managing actions

Actions are executed by the mediation layer. Each action is associated with the scenario that started the action.

6.3.3.1 Dumping Failed Actions

As actions are executed by the mediation layer, dumping the list of failed actions for a Scenario can be of great help while
investigating issues regarding the mediation layer at the Scenario level.

The list of failed actions can be dumped in the log files (depending on your Log4J configuration). The log files can be

viewed directly on the file system in the ${UCA_EBC_INSTANCE}/logs directory using any text editor. The log

files can also be viewed at the UCA for EBC User Interface in the Troubleshooting/Logs panel.

tab of the Java Console and navigating to uca_ebc/<value pack name>-<value pack

version>/scenarios/<scenario name>/operations

The following screenshot shows how to dump failed actions at the scenario level:

UCA for EBC Advanced Troubleshooting 107

Figure 52: Java JMX Console: Dumping Failed Actions for a Scenario

NOTICE:
For more information on how to dump failed actions for a scenario, please see the section: 5.1.3.3 Monitoring

UCA for EBC scenarios

6.4 UCA for EBC Performance analysis

Through the Java JMX interface, UCA for EBC provides event rate measurements that help when analyzing the
performance of a UCA for EBC solution.

UCA for EBC (in events per second) since start-up.

UCA for EBC Advanced Troubleshooting 108

Figure 53: Java JMX Console: Monitoring performance of UCA for EBC Server

This measure and other measurement rates are available both at the Java JMX Console and also at the UCA for EBC User
Interface in the Troubleshooting / Statistics panel.

NOTICE:

For more information on the Java JMX Console, please see the section

For more information on the UCA for EBC User Interface, please refer to: [R3] HPE UCA for EBC User

Interface Guide.

Please see section - for more information on how to monitor the alarm

flow of UCA for EBC

Frequent problems and solutions 109

Chapter 7

Frequent problems and solutions

Below is a list of known issues/ problems that you may encounter, along with a description of how to solve or work around
the issue/problem.

7.1 Problems executing uca-ebc-admin

7.1.1 Cannot connect to UCA for EBC JMX connector

-ebc-admin command-
line tool, then you may want to perform the following verifications:

Table 41: uca-ebc-admin: Cannot connect to UCA for EBC JMX connector

Verification Suggested solution/work-around

Verify that UCA for EBC Server is started Start UCA for EBC Server if it is stopped

Below is an example of a command execution displaying this error:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-admin <options>

ERROR - Cannot connect to UCA Expert JMX connector. Failed to retrieve RMISer

ver stub: javax.naming.ServiceUnavailableException [Root exception is java.rm

i.ConnectException: Connection refused to host: localhost; nested exception i

s:

 java.net.ConnectException: Connection refused (errno:239)]

7.1.2 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc-
admin.log

-ebc-
the uca-ebc-admin command-line tool, then you may want to perform the following verifications:

Table 42: uca-ebc-admin: FileNotFoundException

Verification Suggested solution/work-around

Verify that the user trying to execute uca-ebc-admin has

permission to write in the ${UCA_EBC_INSTANCE} directory

Use another user account or change the permissions

on the ${UCA_EBC_INSTANCE} directory if this is
not the case

Below is an example of a command execution displaying this error:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

Frequent problems and solutions 110

$ uca-ebc-admin <options>

…

log4j:ERROR setFile(null,true) call failed.

java.io.FileNotFoundException: /var/opt/UCA-EBC/logs/uca-ebc-

admin.log (Permission denied (errno:13))

 at java.io.FileOutputStream.openAppend(Native Method)….

7.2 Problems executing uca-ebc-injector

7.2.1 Cannot create connection

-ebc-injector

command-line tool, then you may want to perform the following verifications:

Table 43: uca-ebc-injector: Cannot create connection

Verification Suggested solution/work-around

Verify that UCA for EBC Server is started Start UCA for EBC Server if it is stopped

Below is an example of a command execution displaying this error:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-injector <options>

 /opt/UCA-EBC/bin>uca-ebc-injector -file ../alarms/Alarms.xml

ERROR - Command error: Cannot create connection on UCA Expert JMS queue

7.2.2 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc-
injector.log

ogs/uca-ebc-
the uca-ebc-injector command-line tool, then you may want to perform the following verifications:

Table 44: uca-ebc-injector: FileNotFoundException

Verification Suggested solution/work-around

Verify that the user trying to execute uca-ebc-injector has
permission to write in the ${UCA_EBC_INSTANCE} directory

Use another user account or change the permissions
on the ${UCA_EBC_INSTANCE} directory if this is not
the case

Below is an example of a command execution displaying this error:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc-injector <options>

…

log4j:ERROR setFile(null,true) call failed.

Frequent problems and solutions 111

java.io.FileNotFoundException: /var/opt/UCA-EBC/logs/uca-ebc-

injector.log (Permission denied (errno:13))

 at java.io.FileOutputStream.openAppend(Native Method)….

7.3 Problems starting UCA for EBC

7.3.1 AlreadyBoundException

If you get an error stating uca- UCA for EBC, then you may want to

perform the following verifications:

Table 45: uca-ebc: AlreadyBoundException

Verification Suggested solution/work-around

UCA for EBC RMI port number and the port numbers
used by another process on the system

Update the UCA for EBC RMI port number in the
${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file to avoid
the port number conflict if needed

Below is an example of a command execution displaying this error:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc <options>

…

INFO - Unregistering JMX-exposed beans on shutdown

INFO - Closing Hibernate SessionFactory

INFO - closing

org.springframework.beans.factory.BeanCreationException: Error creating bean

with name 'serverConnector' defined in class path resource [main-context.xml]

: Invocation of init method failed; nested exception is java.io.IOException:

Cannot bind to URL [rmi://localhost:1100/uca-

ebc]: javax.naming.NameAlreadyBoundException: uca-

ebc [Root exception is java.rmi.AlreadyBoundException: uca-ebc]

7.3.2 ClassNotFoundException:
javax.management.remote.rmi.RMIServerImpl_Stub

starting UCA for EBC, then you may want to perform the following verifications:

Table 46: uca-ebc: ClassNotFoundException

Verification Suggested solution/work-around

UCA for EBC RMI port number and the port numbers
used by another process on the system

Update the UCA for EBC RMI port number in the

${UCA_EBC_INSTANCE}/conf/uca-ebc.properties file to avoid
the port number conflict if needed

Below is an example of a command execution displaying this error:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

Frequent problems and solutions 112

$ uca-ebc <options>

…

 ... 30 more

Caused by: java.rmi.UnmarshalException: error unmarshalling arguments; nested

 exception is:

 java.lang.ClassNotFoundException: javax.management.remote.rmi.RMIServ

erImpl_Stub (no security manager: RMI class loader disabled)

Caused by: java.lang.ClassNotFoundException: javax.management.remote.rmi.RMIS

erverImpl_Stub (no security manager: RMI class loader disabled)

7.3.3 FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-ebc.log

FileNotFoundException: ${UCA_EBC_INSTANCE} /logs/uca-

ebc.log UCA for EBC, then you may want to perform the following verifications:

Table 47: uca-ebc: FileNotFoundException

Verification Suggested solution/work-around

Verify that the user trying to start UCA for EBC has
permission to write in the ${UCA_EBC_INSTANCE}
directory

Start UCA for EBC under the uca account if this is not the case

Below is an example of a command execution displaying this error:

On both HP-UX, and Linux:

$ cd ${UCA_EBC_HOME}/bin

$ uca-ebc <options>

…

log4j:ERROR setFile(null,true) call failed.

java.io.FileNotFoundException: /var/opt/UCA-EBC/logs/uca-

ebc.log (Permission denied (errno:13))

 at java.io.FileOutputStream.openAppend(Native Method)

 at java.io.FileOutputStream.<init>(FileOutputStream.java:177)

….

Glossary 113

Appendix A

Glossary

Table 48: Acronym table

Acronym Description

CA Channel Adapter for OSS Open Mediation V7.2

DB Database

DRL Drools Rule file

EBC Event Based Correlation

EVP UCA for EBC Value Pack

GUI Graphical User Interface

Inference engine Process that uses a Rete algorithm

JMS Java Messaging Service

JMX Java Management Extension, used to access or process action on the UCA
for EBC product.

JNDI Java Naming and Directory Interface

NMS Network Management System

SDK Software Development Kit

TT Trouble Ticket

UCA Unified Correlation Analyzer

XML Extensible Markup Language

XSD Schema of an XML file, describing its structure. XSD stands for XML
Schema Definition

X733 Standard describing the structure of an Alarm used in the
telecommunications environment.

	R1ReferenceGuide
	R2VPDevGuide
	R3GUIGuide
	R4InstallGuide
	R5TopoExtensionGuide
	R6ClusteringHAGuide

